• Title/Summary/Keyword: Converter circuits

Search Result 471, Processing Time 0.024 seconds

Prototype Milli Gauss Meter Using Giant Magnetoimpedance Effect in Self Biased Amorphous Ribbon

  • Kollu, Pratap;Yoon, Seok-Soo;Kim, Gun-Woo;Angani, C.S.;Kim, Cheol-Gi
    • Journal of Magnetics
    • /
    • v.15 no.4
    • /
    • pp.194-198
    • /
    • 2010
  • In our present work, we developed a GMI (giant magnetoimpedance) sensor system to detect magnetic fields in the milli gauss range based on the asymmetric magnetoimpedance (AGMI) effect in Co-based amorphous ribbon with self bias field produced by field-annealing in open air. The system comprises magnetoimpedance sensor probe, signal conditioning circuits, A/D converter, USB controller, notebook computer, and program for measurement and display. Sensor probe was constructed by wire-bonding the cobalt based amorphous ribbon with dimensions $10\;mm\;{\times}\;1\;mm\;{\times}\;20\;{\mu}m$ on a printed circuit board. Negative feedback was used to remove the hysteresis and temperature dependence and to increase the linearity of the system. Sensitivity of the milli gauss meter was 0.3 V/Oe and the magnetic field resolution and environmental noise level were less than 0.01 Oe and 2 mOe, respectively, in an unshielded room.

SoC including 2M-byte on-chip SRAM and analog circuits for Miniaturization and low power consumption (소형화와 저전력화를 위해 2M-byte on-chip SRAM과 아날로그 회로를 포함하는 SoC)

  • Park, Sung Hoon;Kim, Ju Eon;Baek, Joon Hyun
    • Journal of IKEEE
    • /
    • v.21 no.3
    • /
    • pp.260-263
    • /
    • 2017
  • Based on several CPU cores, an SoC including ADCs, DC-DC converter and 2M-byte SRAM is proposed in this paper. The CPU core consists of a 12-bit MENSA, a 32-bit Symmetric multi-core processor, as well as 16-bit CDSP. To eliminate the external SDRAM memory, internal 2M-byte SRAM is implemented. Because the SRAM normally occupies huge area, the parasitic components reduce the speed of SoC. In this work, the SRAM blocks are divided into small pieces to reduce the parasitic components. The proposed SoC is developed in a standard 55nm CMOS process and the speed of SoC is 200MHz.

Implementation of Vector Control system for $3\phi$ Induction Motor (3상 유도 전동기 벡터제어 구동시스템의 구현)

  • 홍순일
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.12 no.1
    • /
    • pp.45-50
    • /
    • 1998
  • In recent year, inverters and cycloconverters system are widely used for fed induction motor drives. Motor drives by cycloconverter is possible to frequency have been directly changed without AC/DC converter, so that circuits is simpler than inverter. A aims of this paper is the control strategy and hardware design for vector control system by cycloconverter fed induction motor drives. In this paper, Algorithm of vector control is derivlid from the model of controlled current source-fed induction motor. Vector control system is implemented using these algorithm and a pulse width controled cycloconverter using a SCR. Cycloconverter of vector control system is controlled by pulse width of SCR's trigger signal. pulse width is controlled primary command current $li_1l$ and frequency TEX>$\omega_1$..

  • PDF

The MPPT Control of a Small Wind Power Generation System by Adjusting the DC-Link Voltage of a Grid-connected Inverter (계통 연계형 인버터의 DC-Link 전압 가변을 통한 소형 풍력발전 시스템의 MPPT 제어)

  • Park, Min-Gi;Lee, Joon-Min;Hong, Ju-Hoon;Kim, Young-Seok
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.63 no.10
    • /
    • pp.1402-1411
    • /
    • 2014
  • In this paper, the Maximum Power Point Tracking(MPPT) control of the small scale wind power generation system with a three-phase diode rectifier and the grid-connected inverter is studied. Without the need for the converter circuits to control speed of the generator, it is economical and the structure is simple. Compared with existing systems, it can be to reduce the power semiconductor switches and passive elements, and to implement the MPPT control with only DC-Link voltage control of the grid-connected inverter. In order to allow MPPT control without the characteristic information of the wind turbine, the P&O algorithm is applied, and these are verified by the simulation and experiment.

Real-Time Power Electronics Remote Wiring and Measurement Laboratory (PermLAB) Using 3-D Matrix Switching Algorithms

  • Asumadu, Johnson A.;Tanner, Ralph;Ogunley, Hakeem
    • Journal of Power Electronics
    • /
    • v.10 no.6
    • /
    • pp.611-620
    • /
    • 2010
  • This paper presents a new architecture, called "Power Electronics Remote Wiring and Measurement Laboratory (PermLAB)", that translates a common gateway interface (CGI) string from a remote web user to a web server connected to a 3-dimension switching matrix board, can be used to switch on and off, and to control a cluster of instruments and components. PermLAB addresses real-time connection, switching, and data acquisition over the Internet instead of using simulated data. A software procedure uses a signature system to identify each instrument and component in a complex system. The Web-server application is developed in HTML, JavaScript and Java, and in C language for the CGI interface, which resides in a controller portion of LabVIEW. The LabVIEW software fully integrates the Web sever, LabVIEW data acquisition boards and controllers, and the 3-dimensional switching matrix board. The paper will analyze a half-wave rectifier (AC - DC converter) circuit connected over the Internet using the PermLAB. PermLAB allows students to obtain real data by real-time wiring of real circuits in the laboratory using a "virtual breadboard" on the Web. The software for the Web-based 3-dimensional system is flexible, portable, can be integrated into many laboratory applications or expanded, and easily accessible worldwide.

Leakage Current Energy Harvesting Application in a Photovoltaic (PV) Panel Transformerless Inverter System

  • Khan, Md. Noman Habib;Khan, Sheroz
    • Transactions on Electrical and Electronic Materials
    • /
    • v.18 no.4
    • /
    • pp.190-194
    • /
    • 2017
  • Present-day solar panels incorporate inverters as their core components. Switching devices driven by specialized power controllers are operated in a transformerless inverter topology. However, some challenges associated with this configuration include the absence of isolation, causing leakage currents to flow through various components toward ground. This inevitably causes power losses, often being also the primary reason for the power inverters' analog equipment failure. In this paper, various aspects of the leakage currents are studied using different circuit analysis methods. The primary objective is to convert the leakage current energy into a usable DC voltage source. The research is focused on harvesting the leakage currents for producing circa 1.1 V, derived from recently developed rectifier circuits, and driving a $200{\Omega}$ load with a power in the milliwatt range. Even though the output voltage level is low, the harvested power could be used for charging small batteries or capacitors, even driving light loads.

Sensing of Three Phase PWM Voltages Using Analog Circuits (아날로그 회로를 이용한 3상 PWM 출력 전압 측정)

  • Jou, Sung-Tak;Lee, Kyo-Beum
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.64 no.11
    • /
    • pp.1564-1570
    • /
    • 2015
  • This paper intends to suggest a sensing circuit of PWM voltage for a motor emulator operated in the inverter. In the emulation of the motor using a power converter, it is necessary to measure instantaneous voltage at the PWM voltage loaded from the inverter. Using a filter can generate instantaneous voltage, while it is difficult to follow the rapidly changing inverter voltage caused by the propagation delay and signal attenuation. The method of measuring the duty of PWM using FPGA can generate output voltage from the one-cycle delay of PWM, while the cost of hardware is increasing in order to acquire high precision. This paper suggests a PWM voltage sensing circuit using the analogue system that shows high precision, one-cycle delay of PWM and low-cost hardware. The PWM voltage sensing circuit works in the process of integrating input voltage for valid time by comparing levels of three-phase PWM input voltage, and produce the output value integrated at zero vector. As a result of PSIM simulation and the experiment with the produced hardware, it was verified that the suggested circuit in this paper is valid.

Design of Power Factor Correction High Efficiency PWM Single-Phase Rectifier (역률보상 고효율 PWM 단상 정류기의 설계)

  • Choi, Seong-Hun;Kim, In-Dong;Nho, Eui-Cheol
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.11 no.3
    • /
    • pp.540-548
    • /
    • 2007
  • The parer proposes a power factor correction high efficiency PWM single-phase rectifier. Its good characteristics such as simple PWM control, low switch stress, and low VAR rating of commutation circuits make the proposed rectifier very suitable for various unidirectional power applications. In addition, the proposed rectifier consists of three boost-converter-type IGBT modules with the switching devices located at the bottom leg of the rectifier scheme, which also enables the use of the same power supply in both control and gate driver, thus resulting in simple control and power circuit structure. The detailed principle of operation and experimental results are also included. In particular, the design guide line is also suggested to make the circuit design of the proposed rectifier easy and fast.

Recent Developments in High Resolution Delta-Sigma Converters

  • Kim, Jaedo;Roh, Jeongjin
    • Journal of Semiconductor Engineering
    • /
    • v.2 no.1
    • /
    • pp.109-118
    • /
    • 2021
  • This review paper describes the overall operating principle of a discrete-time delta-sigma modulator (DTDSM) and a continuous-time delta-sigma modulator (CTDSM) using a switched-capacitor (SC). In addition, research that has solved the problems related to each delta-sigma modulator (DSM) is introduced, and the latest developments are explained. This paper describes the chopper-stabilization technique that mitigates flicker noise, which is crucial for the DSM. In the case of DTDSM, this paper addresses the problems that arise when using SC circuits and explains the importance of the operational transconductance amplifier performance of the first integrator of the DSM. In the case of CTDSM, research that has reduced power consumption, and addresses the problems of clock jitter and excess loop delay is described. The recent developments of the analog front end, which have become important due to the increasing use of wireless sensors, is also described. In addition, this paper presents the advantages and disadvantages of the three-opamp instrumentation amplifier (IA), current feedback IA (CFIA), resistive feedback IA, and capacitively coupled IA (CCIA) methods for implementing instrumentation amplifiers in AFEs.

Development of Power Supply for Ka-band Tracking Radars (Ka-대역 추적 레이더용 전원공급기 개발)

  • Lee, Dongju;An, Se-Hwan;Joo, Ji-Han;Kwon, Jun-Beom;Seo, Mihui
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.22 no.5
    • /
    • pp.99-103
    • /
    • 2022
  • Millimeter-wave tracking radars operate in various environmental restrictions, thus they demand stable power sources with low noise level under high fluctuation of input voltage. This paper presents the design and implementation of the compact power supply with max power of 727 W for Ka-band tracking radar applications. To meet requirements of voltage accuracy and system efficiency for transceiver circuits, upper plates of buck converters are attached on the covers of power supply for efficient heat dissipation. The proposed power supply achieves system efficiency of 88.4 %, output voltage accuracy of ±2 % and noise level of <1% under full load conditions.