• Title/Summary/Keyword: Conversion Ratio

Search Result 2,078, Processing Time 0.03 seconds

A Large Trans/cis Conversion Ratio In Redox-Conjugated Single-Light Reversible Isomerization of a Cobalt Complex with meta-Bipyridylazobenzene Ligands

  • Kume, Shoko;Kurihara, Masato;Nishihara, Hiroshi
    • Journal of the Korean Electrochemical Society
    • /
    • v.5 no.4
    • /
    • pp.189-191
    • /
    • 2002
  • Reversible trans-cis isomerization of meta-bipyridylazobenzene coordinated to cobalt was achieved by a combination of photoirradiation with a single UV light source and a Co(II)/Co(III) redox reaction. The trans/cis conversion performance was significantly improved in the meta-form compared with the meta-form ligated to cobalt.

Overall Conversion Efficiency for Dimethylsulfide to Sulfur Dioxide in the Marine Boundary Layer-An Overview

  • Shon, Zang-Ho
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.18 no.E2
    • /
    • pp.107-120
    • /
    • 2002
  • Dimethyl sulfide (DMS) is the major sulfur gas released from the ocean. The atmospheric DMS released from the ocean is oxidized mainly by hydroxyl (OH) radical during the day and nitrate (NO$_3$) radical at night to form sulfur dioxide (SO$_2$) as well as other stable products. The oxidation mechanism of DMS via OH has been known to proceed by two channels; abstraction and addition channels. The major intermediate product of the addition channel has been known to be dimethylsulfoxide (DMSO) based on laboratory chamber studies and field experiments. However, a branching ratio for DMSO formation is still uncertain. The reaction of DMSO with OH ultimately produces SO$_2$and dimethylsulfone. The major product of the abstraction channel has known to be SO$_2$from laboratory chamber studies. But overall conversion efficiency for DMS to SO$_2$from DMS oxidation is still inconsistent in the literature. Based on laboratory and field studies, the conversion efficiency from the abstraction channel is likely to be greater than 0.5, while that from the addition channel is likely to be greater than 0.6. Overall conversion efficiency from DMS to SO$_2$might be greater than 0.5 based on the above two values in the remote marine boundary layer (MBL). This high efficiency in the remote MBL is supported by strong coupling between DMS and SO$_2$measurements with high temporal resolution.

Development of the Switching Mode Conversion Type Pulse Charger for the Lead Battery of Solar Cell Generator Equipment by Fly-Back Converter Method (플라이백 컨버터방법에 의한 태양광발전설비의 납축전지 스위칭모드 전환형 펄스충전기 개발)

  • Shin, Choon-Shik;An, Young-Joo;Kim, Dong-Wan
    • The Transactions of the Korean Institute of Electrical Engineers P
    • /
    • v.58 no.1
    • /
    • pp.20-26
    • /
    • 2009
  • In this paper, the switching mode conversion type pulse charger by fly-back converter method for lead battery of the solar cell generator equipment is proposed. And we propose the control circuit and design method of insulated switching mode convert type pulse charger by fly-back convert method in the lead battery. The proposed system can minimize the current consumption by digital pulse. Also the proposed system can generate the constant 10[KHz] frequency, transmit the signal with main control system in the power control system. And it supervises the state of lead battery using one chip micro processor. The proposed the switching mode conversion type pulse charger by the fly-back converter method can charge fast and stabilize lead battery with nominal value 12[V], 20[AH]. Also we propose the design procedure of the power control circuit for turn ratio of fly-back inductor and determining method of values such as the charging current, bulk current, partial current, over current value and fixed charging voltage. The experiment results for the voltage and current wave for partial, bulk, over and fixed charging period show the good charging effect and performance. And the PCB and internal coupling diagram of the switching mode conversion type pulse charger by fly-back converter method is presented.

pH-Controlled Synthesis of Cephalexin by a Purified Acetobacter turbidans Ampicillin Acylase

  • Nam, Doo-Hyun;Ryu, Yeon-Woo;Dewey D.Y Ryu
    • Journal of Microbiology and Biotechnology
    • /
    • v.11 no.2
    • /
    • pp.329-332
    • /
    • 2001
  • It has been known that, in enzymatic synthesis of cephalexin, the conversion yield was reduced by high loading of ampicillin acylase. In order to elucidate this phenomena, pH-controlled synthesis of cephalexin was examined using a purified Acetobacter turbidans acylase. When the pH of the reaction mixture was maintained at $6.20{\pm}0.04$, the reduction of the maximal conversion rate was not observed even with high enzyme loading. The kinetic parameters also suggest that pH drop during the enzymatic synthesis of cephalexin was mainly attributed to the rapid hydrolysis of D-${\alpha}$-phenylglycine methyl ester to D-${\alpha}$-phenylglycine, rather than the disappearance of 7-amino-3-deacetoxycephalosporanic acid for cephalexin synthesis. At higher molar ratio of two substrates, [D-${\alpha}$-phenylglycine methyl ester]/[7-amino-3-deacetoxycephalosporanic acid], the conversion rate was also elevated under pH-controlled enzymatic synthesis, which implies that the main reason for the pH drop is due to the production of D-${\alpha}$-phenylglycine methyl easter, the effect of a water-methanol cosolvent system on the ester, the effect of a water-methanol cosolvent system on the conversion profile was also examined. Even the though the conversion rate was increased in 10% methanol solution, a higher than 16% methanol in the reaction mixture caused an inactivation of enzyme.

  • PDF

Conversion of G. hansenii PJK into Non-cellulose-producing Mutants According to the Culture Condition

  • Park, Joong-Kon;Hyun, Seung-Hun;Jung, Jae-Yong
    • Biotechnology and Bioprocess Engineering:BBE
    • /
    • v.9 no.5
    • /
    • pp.383-388
    • /
    • 2004
  • The conversion of a cellulose-producing cell ($Cel^+$) from Gluconacetobacter hansenii PJK (KCTC 10505 BP) to a non-cellulose-producing cell ($Cel^-$) was investigated by measuring the colony forming unit (CFU). This was achieved in a shaking flask with three slanted baffles, which exerted a strong shear stress. The addition of organic acid, such as glutamic acid and acetic acid, induced the conversion of microbial cells from a wild type to $Cel^-$ mutants in a flask culture. The supplementation of $1\%$ ethanol to the medium containing an organic acid depressed the con-version of the microbial cells to $Cel^-$ mutants in a conventional flask without slanted baffles. The addition of ethanol to the medium containing an organic acid; however, accelerated the conversion of microbial cells in the flask with slanted baffles. The $Cel^+$ cells from the agitated culture were not easily converted into $Cel^-$ mutants on the additions of organic acid and ethanol to a flask without Slanted baffles, but some portion of the $Cel^+$ cells were converted to $Cel^-$ mutants in a flask with slanted baffles. The conversion ratio of $Cel^+$ cells to $Cel^-$ mutants was strongly re-lated to the production of bacterial cellulose independently from the cell growth.

A study on zinc phosphate conversion coatings on Mg alloys

  • Phuong, Nguyen Van;Lee, Kyuhwan;Chang, Doyon;Kim, Man;Lee, Sangyeoul;Moon, Sungmo
    • Proceedings of the Korean Institute of Surface Engineering Conference
    • /
    • 2012.11a
    • /
    • pp.17-17
    • /
    • 2012
  • Magnesium alloys exhibit many attractive properties such as low density, high strength/weight ratio, high thermal conductivity, very good electromagnetic features and good recyclability. However, most commercial magnesium alloys require protective coatings because of their poor corrosion resistance. Attempts have been made to improve the corrosion resistance of the Mg alloys by surface treatments, such as chemical conversion coatings, anodizing, plating and metal coatings, are commonly applied to magnesium alloys in order to increase the corrosion resistance. Among them, chemical conversion coatings are regarded as one of the most effective and cheapest ways to prevent corrosion resistance. In this study, zinc phosphate conversion coatings on various Mg alloys have been developed by selecting proper phosphating bath composition and concentration and by optimizing phosphating time, temperature. Morphology, coatings composition, corrosion resistance, adhesion and its formation and growth mechanism of the zinc phosphate conversion coatings were studied. Results have shown some attractive properties such as simplicity in operation, significantly increased corrosion protective property. However, adhesions between coatings and substrate and also between coatings and paint are still not satisfied. Resolving the problems and understanding the mechanism of phosphating process are targets of our study.

  • PDF

CO Conversion Characteristics of WGS Catalysts for SEWGS System (SEWGS 시스템을 위한 WGS 촉매들의 CO 전환 특성)

  • Ryu, Hojung;Park, Jihye;Lee, Dongho;Park, Jaehyeon;Bae, Dalhee
    • Journal of Hydrogen and New Energy
    • /
    • v.26 no.2
    • /
    • pp.96-104
    • /
    • 2015
  • Reactivity of commercial WGS catalyst and four new catalysts(RMC-3, PC-73, PC-67SU, PC-59) manufactured with various compositions by Korea Electric Power Research Institute(KEPCO RI) were compared to select suitable WGS catalyst for SEWGS system. Steam/CO ratio, gas velocity, flow rates of syngas, and temperature were considered as operating variables. As a result, commercial catalyst showed the highest CO conversion and RMC-3 catalyst showed also high CO conversion. Therefore, commercial and RMC-3 catalysts were selected as applicable catalysts. However, PC-73 catalyst showed low CO conversion at low temperature($200^{\circ}C$) but showed good reactivity at high temperature($225{\sim}250^{\circ}C$), and therefore, PC-73 catalyst was selected as applicable catalyst for high temperature operation. Continuous operations up to 24 hours for those three catalysts(commercial, RMC-3, PC-73) were conducted to check reactivity decay of catalysts. All three catalysts maintained their original reactivity.

Experimental study on operation of diesel autothermal reformer for SOFC system (SOFC 시스템용 디젤 자열개질기 운전을 위한 기초 연구)

  • Yoon, Sang-Ho;Kang, In-Yong;Bae, Joong-Myeon
    • Proceedings of the KSME Conference
    • /
    • 2007.05b
    • /
    • pp.2015-2020
    • /
    • 2007
  • Diesel is an excellent candidate fuel for fuel cell applications due to its high hydrogen density and well-established infrastructure. But, it is hard to guarantee desirable performance of diesel reformer because diesel reforming has several problems such as sulfur poisoning of catalyst and carbon deposition. We have been focusing on diesel autothermal reforming(ATR) for substantial period. It is reported that ATR of diesel has several technical advantages such as relatively high efficiency and fuel conversion compared to steam reforming(SR) and partial oxidation(POX). In this paper, we investigate characteristics of diesel reforming under various ratios of reactants(oxygen to carbon ratio, steam to carbon ratio) for improvement of reforming performances(high reforming efficiency, high fuel conversion, low carbon deposition). We also exhibit calculated heat balance of autothermal reformer at each condition to help thermal management of SOFC system.

  • PDF

On A Pitch Alteration using the Waveform Symmetry with Time - Frequency Conversion (시간 - 주파수 변환에 의한 파형 대칭 피치변경법)

  • 박형빈
    • Proceedings of the Acoustical Society of Korea Conference
    • /
    • 1998.06c
    • /
    • pp.147-150
    • /
    • 1998
  • In the case of speech synthesis, the waveform coding method with high quality is mainly used to the synthesis by analysis. Because the parameters of this coding method are not classified as both excitation and vocal tract parameters, it is difficult to apply the waveform coding method to the synthesis by rule. Thus, in order to apply the waveform coding method to the synthesis by rule, a pitch alteration is required for the prosody control. In the speech synthesis method by the conventional PSOLA technique, applying symmetric window function to asymmetric speech waveform, it occurs the unbalance phenomenon of energy according to the overlapped degree of pitch interval adjustment. In this paper to overcome the unbalance phenomenon of energy, we proposed a new method that can convert asymmetric waveform to symmetric one by time-frequency conversion. As a result, we can obtain an average spectrum distortion ratio with 6.38% according to the pitch alteration ratio.

  • PDF

High Efficiency Control of SRM with Maximum Energy Conversion Method (최대 에너지 변환기법에 의한 SRM 고효율 운전)

  • Kang Y. J.;Lee D. H.;Oh S. G.;Park S. J.;Ahn J. W.
    • Proceedings of the KIPE Conference
    • /
    • 2001.12a
    • /
    • pp.37-40
    • /
    • 2001
  • This paper is suggested an optimal switching angle of a switched reluctance motor drive system for maximum energy ratio. A new magnetizing method with a low-frequency increasing the energy conversion ratio that is related to the efficiency of motor is proposed As results, it improves the efficiency about 2[$\%$]. And a torque ripple is also reduced compared with that of the conventional switching angle magnetizing approach. In order to start softly regardless of a large ripple torque, the profile of phase current is predicted and current control mode was adapted when it is operated under the starting speed.

  • PDF