• 제목/요약/키워드: Conversion Energy

검색결과 3,344건 처리시간 0.033초

고분자전해질 연료전지의 MEA 제조방법과 백금 담지촉매의 백금 담지비율에 따른 성능분석 (Effect of platinum content in carbon supported platinum catalyst and MEA fabrication method on performance of PEM fuel cell)

  • 조용훈;조윤환;박현서;성영은
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 한국신재생에너지학회 2006년도 추계학술대회
    • /
    • pp.356-359
    • /
    • 2006
  • 고분자전해질 연료전지의 MEA를 CCM (Catalyst Coated Membrane) CCS(Catalyst Coated Substrate) 형태로 각각 제조하고 백금담지 비율이 서로 다른 백금 담지촉매를 각각 적응하여 MEA를 CCM형태로 제조하여 단위전지 성능평가를 수행하였다 백금담지 비율이 다른 촉매를 적용한 CCM형태 MEA의 표면을 SEM (scanning electron microscopy)으로 분석하였으며, 단위전지 성능평가를 수행하는 동시에 EIS (Electrochemical Impedance Spectroscopy)를 통하여 MEA의 저항을 분석하였다. 고분자전해질 연료전지의 성능은 MEA의 제조방법과 백금담지 촉매의 백금담지비율에 따라 크게 변함을 확인 할 수 있었다.

  • PDF

A Basic Study on the Conversion of Sound into Color Image using both Pitch and Energy

  • Kim, Sung-Ill
    • International Journal of Fuzzy Logic and Intelligent Systems
    • /
    • 제12권2호
    • /
    • pp.101-107
    • /
    • 2012
  • This study describes a proposed method of converting an input sound signal into a color image by emulating human synesthetic skills which make it possible to associate an sound source with a specific color image. As a first step of sound-to-image conversion, features such as fundamental frequency(F0) and energy are extracted from an input sound source. Then, a musical scale and an octave can be calculated from F0 signals, so that scale, energy and octave can be converted into three elements of HSI model such hue, saturation and intensity, respectively. Finally, a color image with the BMP file format is created as an output of the process of the HSI-to-RGB conversion. We built a basic system on the basis of the proposed method using a standard C-programming. The simulation results revealed that output color images with the BMP file format created from input sound sources have diverse hues corresponding to the change of the F0 signals, where the hue elements have different intensities depending on octaves with the minimum frequency of 20Hz. Furthermore, output images also have various levels of chroma(or saturation) which is directly converted from the energy.

회분식 유동층 반응기에서 촉매함량 변화에 따른 WGS 촉매의 반응특성 (Reaction Characteristics of WGS Catalyst with Fraction of Catalyst in a Batch Type Fluidized Bed Reactor)

  • 류호정;현주수;김하나;황택성
    • 한국수소및신에너지학회논문집
    • /
    • 제22권4호
    • /
    • pp.465-473
    • /
    • 2011
  • To find the optimum mixing ratio of WGS catalyst with $CO_2$ absorbent for SEWGS process, water gas shift reaction tests were carried out in a fluidized bed reactor using commercial WGS catalyst and sand (as a substitute for $CO_2$ absorbent). WGS catalyst content, gas velocity, and steam/CO ratio were considered as experimental variables. CO conversion increased as the catalyst content increased during water gas shift reaction. Variations of the CO conversion with the catalyst content were small at low gas velocity. However, those variations increased at higher gas velocity. Within experimental range of this study, the optimum operating condition(steam/CO ratio=3, gas velocity = 0.03 m/s, catalyst content=10 wt.%) to get high CO conversion and $CO_2$ capture efficiency was confirmed. Moreover, long time water gas shift reaction tests up to 20 hours were carried out for two cases (catalyst content = 10 and 20 wt.%) and we could conclude that the WGS reactivity at those conditions was maintained up to 20 hours.

Experimental Study on Performance of Wave Energy Converter System with Counterweight

  • Han, Sung-Hoon;Jo, Hyo-Jae;Lee, Seung-Jae;Hwang, Jae-Hyuck;Park, Ji-Won
    • 한국해양공학회지
    • /
    • 제30권1호
    • /
    • pp.1-9
    • /
    • 2016
  • In order to convert wave energy into large quantities of high-efficiency power, it is necessary to study the optimal converter system appropriate for the environment of a specific open ocean area. A wave energy converter system with a counterweight converts the translation energy induced from the heave motion of a buoy into rotary energy. This experimental study evaluated the primary energy conversion efficiency of the system, which was installed on an ocean generating basin with a power take-off system. Moreover, this study analyzed the energy conversion performance according to the weight condition of the buoy, counter-weight, and flywheel by changing the load torque and wave period. Therefore, these results could be useful as basic data such as for the optimal design of a wave energy converter with a counterweight and improved energy conversion efficiency.

Near-IR Quantum Cutting Phosphors: A Step Towards Enhancing Solar Cell Efficiency

  • Jadhav, Abhijit P.;Khan, Sovann;Kim, Sun Jin;Cho, So-Hye
    • Applied Science and Convergence Technology
    • /
    • 제23권5호
    • /
    • pp.221-239
    • /
    • 2014
  • The global demand for energy has been increasing since past decades. Various technologies have been working to find a suitable alternative for the generation of sustainable energy. Photovoltaic technologies for solar energy conversion represent one of the significant routes for the green and renewable energy production. Despite of remarkable improvement in solar cell technologies, the generation of power is still suffering with lower energy conversion efficiency, high production cost, etc. The major problem in improving the PV efficiency is spectral mismatch between the incident solar spectrum and bandgap of a semiconductor material used in solar cell. Luminescent materials such as rare-earth doped phosphor materials having the quantum efficiency higher than unity can be helpful for photovoltaic applications. Quantum cutting phosphors are the most suitable candidates for the generation of two or more low-energy photons for the absorption of every incident high-energy photons. The phosphors which are capable of converting UV photon to visible and near-IR (NIR) photon are studied primarily for photovoltaic applications. In this review, we will survey various near IR quantum cutting phosphors with respective to their synthesis method, energy transfer mechanism, nature of activator, sensitizer and dopant materials incorporation and energy conversion efficiency considering their applications in photovoltaics.

Enhance photoelectric efficiency of PV by optical-thermal management of nanofilm reflector

  • Liang, Huaxu;Wang, Baisheng;Su, Ronghua;Zhang, Ao;Wang, Fuqiang;Shuai, Yong
    • Advances in nano research
    • /
    • 제13권5호
    • /
    • pp.475-485
    • /
    • 2022
  • Crystalline silicon photovoltaic cells have advantages of zero pollution, large scale and high reliability. A major challenge is that sunlight wavelength with photon energy lower than semiconductor band gap is converted into heat and increase its temperature and reduce its conversion efficiency. Traditional cooling PV method is using water flowing below the modules to cool down PV temperature. In this paper, the idea is proposed to reduce the temperature of the module and improve the energy conversion efficiency of the module through the modulation of the solar spectrum. A spectrally selective nanofilm reflector located directly on the surface of PV is designed, which can reflect sunlight wavelength with low photon energy, and even enhance absorption of sunlight wavelength with high photon energy. The results indicate that nanofilm reflector can reduce spectral reflectivity integral from 9.0% to 6.93% in 400~1100 nm wavelength range, and improve spectral reflectivity integral from 23.1% to 78.34% in long wavelength range. The nanofilm reflector can reduce temperature of PV by 4.51℃ and relatively improved energy conversion efficiency of PV by 1.25% when solar irradiance is 1000 W/m2. Furthermore, the nanofilm reflector is insensitive in sunlight's angle and polarization state, and be suitable for high irradiance environment.

Oxygen Permeation Properties and Phase Stability of Co-Free $La_{0.6}Sr_{0.4}Ti_{0.2}Fe_{0.8}O_{3-{\delta}}$ Oxygen Membrane

  • Kim, Ki-Young;Park, Jung-Hoon;Kim, Jong-Pyo;Son, Sou-Hwan;Park, Sang-Do
    • Korean Membrane Journal
    • /
    • 제9권1호
    • /
    • pp.34-42
    • /
    • 2007
  • A perovskite-type ($La_{0.6}Sr_{0.4}Ti_{0.2}Fe_{0.8}O_{3-{\delta}}$) dense ceramic membrane was prepared by polymerized complex method, using citric acid as a chelating agent and ethylene glycol as an organic stabilizer. Effect of Ti addition on lanthanum-strontium ferrite mixed conductor was investigated by evaluating the thermal expansion coefficient, the oxygen flux, the electrical conductivity, and the phase stability. The thermal expansion coefficient in air was $21.19\;{\times}\;10^{-6}/K$ at 473 to 1,223 K. At the oxygen partial pressure of 0.21 atm ($20%\;O_2$), the electrical conductivity increased with temperature and then decreased after 973 K. The decrement in electrical conductivity at high temperatures was explained by a loss of the lattice oxygen. The oxygen flux increased with temperature and was $0.17\;mL/cm^2{\cdot}min$ at 1,223 K. From the temperature-dependent oxygen flux data, the activation energy of oxygen ion conduction was calculated and was 80.5 kJ/mol at 1,073 to 1,223 K. Also, the Ti-added lanthanum-strontium ferrite mixed conductor was structurally and chemically stable after 450 hours long-term test at 1,173 K.

Study on the mixing performance of mixing vane grids and mixing coefficient by CFD and subchannel analysis code in a 5×5 rod bundle

  • Bin Han ;Xiaoliang Zhu;Bao-Wen Yang;Aiguo Liu;Yanyan Xi ;Lei Liu ;Shenghui Liu;Junlin Huang
    • Nuclear Engineering and Technology
    • /
    • 제55권10호
    • /
    • pp.3775-3786
    • /
    • 2023
  • Mixing Vane Grid (MVG) is one of the most important structures in fuel assembly due to its high performance in mixing the coolant and ultimately increasing Critical Heat Flux (CHF), which avoids the temperature rising suddenly of fuel rods. To evaluate the mixing performance of the MVG, a Total Diffusion Coefficient (TDC) mixing coefficient is defined in the subchannel analysis code. Conventionally, the TDC of the spacer grid is obtained from the combination of experiments and subchannel analysis. However, the processing of obtaining and determine a reasonable TDC is much challenging, it is affected by boundary conditions and MVG geometries. In is difficult to perform all the large and costing rod bundle tests. In this paper, the CFD method was applied in TDC analysis. A typical 5 × 5 MVG was simulated and validated to estimate the mixing performance of the MVG. The subchannel code was used to calculate the TDC. Firstly, the CFD method was validated from the aspect of pressure drop and lateral temperature distribution in the subchannels. Then the effect of boundary conditions including the inlet temperature, inlet velocities, heat flux ratio between hot and cold rods and the arrangement of hot and cold rods on MVG mixing and TDC were studied. The geometric effects on mixing are also carried out in this paper. The effect of vane pattern on mixing was investigated to determine which one is the best to represent the grid's mixing performance.

Steam Reforming of Toluene Over Ni/Coal Ash Catalysts: Effect of Coal Ash Composition

  • Jang, Jinyoung;Oh, Gunung;Ra, Ho Won;Yoon, Sung Min;Mun, Tae Young;Seo, Myung Won;Moon, Jihong;Lee, Jae-Goo;Yoon, Sang Jun
    • Korean Chemical Engineering Research
    • /
    • 제59권2호
    • /
    • pp.232-238
    • /
    • 2021
  • The development of a low cost catalyst with high performance and small amount of carbon deposition on catalyst from toluene steam reforming were investigated by using coal ash as a support material. Ni-loaded coal ash catalyst showed similar catalytic activity for toluene steam reforming compared with the Ni/Al2O3. At 800 ℃, the toluene conversion was 77% for Ni/TAL, 68% for Ni/KPU and 78% for Ni/Al2O3. Ni/TAL showed similar toluene conversion to Ni/Al2O3. However, Ni/KPU produced higher hydrogen yield at relatively lower toluene conversion. Ni/KPU catalyst showed a remarkable ability of suppressing the carbon deposition. The difference in coke deposition and hydrogen yield is due to the composition of KPU ash (Ca and Fe) which increase coke resistance and water gas shift reaction. This study suggests that coal ash catalysts have great potential for the application in the steam reforming of biomass tar.

初期攪亂에 의한 로스비 形過程에 있어서의 에너지 換 (Energy Conversion in the Rossby Adjustment Process for Step-Like Initial Disturbances)

  • 성영호
    • 한국해양학회지
    • /
    • 제21권3호
    • /
    • pp.131-135
    • /
    • 1986
  • 階段形 初期海面攪亂이 定常狀態에 도달할 때 에 생기는 에너지 換(位置에 너지로부터 運動에너지로)에 대하여 고찰하였다. 無限少 攪亂의 경우 線形化가 가능 하며 이때 換比(生成된 運動에너지의 消滅된 位置에너지에 대한)는 初期攪亂의 水平的 規模가 커짐에 따라 1/3에 近接함이 解析的으로 밝혀졌다.

  • PDF