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Energy Conversion in the Rossby Adjustment Process for
Step-Like Initial Disturbances
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Abstract

Conversion of energy from potential to kinetic form is considered when a step-like initial distur-
bance is released to reach a final steady state. For small amplitute disturbances, linearization can be
made and it is proved analyticaily that the conversion factor (ratio of generated kinetic to loss in poten-
ual energies) asymptotically approaches to 1/3 as the horizontal scale of disturbances becomes large.
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INTRODUCTION

The Rossby adjustment process has provid-
ed a powerful insight in studying the effect of
initial disturbances. The main physical con-
straints in this process are the conservation of
potential vorticity and geostrophic balance.
However, the non-linearity of the problem
sometimes masks some physical processes oc-
curring during the adjustment because only
the initial and final states can be found.

Recent studies of the Rossby adjustment
process (Gill, 1982, P. 194: Van Heijst, 1985:
Seung, 1986) show that only 1/3 of the initial
potential energy is converted into kinetic
energy for initial disturbances of large
horizontal extent. In the barotropic case, it
can be shown that the rest (2/3) of energy is
radiated away as propagating Pincare waves
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(Gill, 1982). In the baroclinic case (Van Hei-
jst, 1985: Seung, 1986) where the initial distur-
bances are given as a density change of a
layer, the problem cannot be linearized.
Analytic methods lead to non-linear algebraic
equations which are solved numerically for a
given set of parameters. In those studies, the
comparison of energies between the initial and
final states leads to the same conversion factor
(1/3). However, it is not known how the rest
of the energy is lost. In all these cases, the
energy of the final state was obtained only
through the determination of velocities and
elevation.

In this paper, we consider the energy con-
version problem for simple cases; initial
disturbances are given by step-like surface and
interface elevations for barotropic and
baroclinic cases respectively. Both potential
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and kinetic energies are obtained direcily from
the equation of motion. This can be done
when the Fourier transtorm method is ap-
plied. This study then shows that the conver-
sion factor can be found as a function of the
horizontal scale of initial disturbances.

BAROTROPIC CASE

Assume an initial state where a part of the
ocean surface is elevated uniformly by a small
amount 7.. As shown in Fig.1, this initial
disturbance will later adjust itself to a
geostrophic balance thus creating the
geostrophic current. To simplify the problem,
we consider a two dimensional case where
conditions are uniform in the direction
perpendicular 1o the page (same direction as
the current, V). Denote that

H : undisturbed water depth
n : surface elevation in final state
L : extent of initial disturbance before
the adjustment process.
b : final extent of the disturbed water
columns after the adjustment process
0 : density
f : Coriolis’ parameter
g . gravity constant
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Fig. 1. Definition sketch of barotropic Rossby adjust-
ment problem showing the initial (—) and final (--) states.

(%,2) @ coordinate system

For conservation of potential vorticity of the
disturbed (x| <b) and undisturbed (|x|>b)
water columns, the governing equations are

f f+V,

o b
f f+V, \
H —m“‘ fOI‘ |X|>b (2;

and for geostrophic balance, for all water col-
umns,

fV=gn, for —co<x<<oo (3)

In the above equations, subscript x denotes
the differentiation with respect to x and b is
yet to be found by solving the non-linear
equations (1) through (3) in the same manner
as Stommel and Veronis (1980), Van Heijst
(1985) and Seung (1986).

We non-dimensionalize variables such that

(0, ne)=H " n¢)
(L, b, x) =R (L, b, x")
V.  =iR.V’

where Re = V gH/f is the external Rossby
radius. We drop the primes hereafter. Assum-
ing small disturbances (7, 7o < H), lin-
earization can be made to within O( 7, 7. ) be-
cause the unknown b can be approximated as
L(c./f. Appendix). The final equation obtai-
ned from Eq.(1) through (3) is then given by

Uu_UZ_G(X) (4)
where

Mo for |x|<L

G )= ¢) for |x|>L

(5)

Since 7: is continuous, a Fourier transform
can be made such that

Fln)= [ persdx

Applying this to Eq.(4), we obtain
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_ FG(x)]
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Fln)=
Equation (6) indicates that the response is
dependent on the wave number. Since the
spectral character of the final state (7) is
dependent on the shape of the initial distur-
bance [G(x)] it can be said that the energy con-
version cannot be generalized for arbitrary
shapes of initial disturbance. It also shows
that larger scale motion preserves more poten-
tial energy after the adjustment. For a step-
like initial disturbance shown in Eq.(5), Eq(6)
becomes

27, sinkL

Fin)=-137 & (7)
and

F (V)=F(n,)=ikF(35) (8i
Since

o :_l_ /Q:L * ’
-[ 7t dx 27 Jow F(n)F*(5)dk (9

o

and
" e 1 - .
[m VZidx 7n Im F{p )F*(n0dk  (10)

where * denotes complex conjugate, the
change in (dimensional) potential energy

2 oo o
APE=%R" [f G (x)dx— f )
is given, with the use of Egs. (5) and (7), by

2 2 ”
APE=ng Rennf (- 1
T —o {

e

sin’kLL
kz

The generated kinetic energy (dimensional)

23 .
KE:———pH;Ref Vidx

dk an)

is given, with the use of Eqs. (10), (8) and (7),
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Fig. 2. The energy conversion factor as a function of
the horizontal scale of initial disturbance. L is non-
dimensionalized by the Rossby radius (external for
barotropic and internal for baroclinic cases)

by

KE= o ,dk (12)

_ peHReng fm sin’kL.
o (k1)

T

to within O(n). Equations (11) and (12) give
then thc ratio (conversion factor)

KE _1-e ™(1+2L)
APE  3-¢ %3420

(13)

As shown in Fig. 2, this approaches asymp-
totically to 1/3 for large L.

BAROCLINIC CASE

The problem is basically same as the
previous case. An initial disturbance is given
on the density interface. Take a two layer
ocean (Fig. 3) and denote again that

H : undisturbed layer depth (same for
both layers)

Do : initial disturbance

Ui : elevation in final state

L : extent of initial disturbance before
the adjustment process

a(b) : final extent of the disturbed water

columns in upper (lower) layer after
the adjustment process

V.(V;) : upper (lower) layer velocity

©2.(0,) : upper (lower) layer density

We non-dimensionalize variables such that
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Fig. 3. Problem definition in baroclinic case. Asin Fig.
1, solid and doued lines represent the initial and final
states respectively.

{770, 1) :H(Uo/,ﬂ/)
(L,a,b,x)=R; (L, a" b, x")
V), V,) =1R, (V/, V])

where R, =V gHAp /0. /11 is the internal
Rossby radius; Ap=p.— 0,; and po is the
mean density. Primes are dropped hereafter.
For conservation of potential vorticity, the
governing equations for each layer are

| 14+ Vi
+ +
It 147 for |x|<a (14)
1 _1+V,
1= 1-7
114V,
1+ 1+
7o 7 for a<[|x|<b (15)
1 z_li'_YE
1-17
1 _ Ve
1+
7 for |x|>b (16)
| LtV
1-19

and for the thermal wind relationship,

V= V,= —p, for —oox<oo (17}

By the same reasoning as before (¢.!. Appen-
dix), these equations can be linecarized to
within O( 7, 70 ) as follows:

nax— 27 —2G (x) 18)

where

Mo for |xI<L

(19}
0 for |x|>1L.

Gx)=

Since 7: is continuous, F(7) can be given by

_T2FGKX)] .

F(n)
The same arguement can be made about
Eq.(20) as in the barotropic case, i.e. response
is dependent on the shape and the horizontal
scale of initial disturbance.

For an initial disturbance G(x) prescribed
in Eq.(19), the changes in potential and
kinetic energies are given by

S112 s .

APE= VA.E%‘H_BJ( ] GHix)dx - j ryzd,\i
2 o

21

and

KE:ﬂo}lzf’Rifj[(Vl—Vz)’; (Vi V)

AogHR, = (22)
—ALEES " e

respectively. Equation (22) is correct to within
O(750, Ap/ pe). Note that the barotropic
component, (V, + V;)/2, is absent. In the
same way as before, these can be expressed in
the wave number domain as follows:

2 2 oc
APEzéﬁg&&@f [1_(_;1_]
Ve o0

Ki+42)?
a L (23)
S
e
_ 2A,ogH2Ri7702 = sin’kLL
KE . fw gy @
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These lead to the ratio (conversion factor)

KE _1-e % (1+2V2L)
APE  3-e '/**(3+2V2L)

{25)

which has the same character as that in the
barotropic case (c.f. Fig. 2), i.e. asymptotical-
ly approaches to 1/3.

CONCLUSIONS

For step-like initial disturbances both in
barotropic and baroclinic cases, the conver-
sion factor approaches rapidly to 1/3 as their
horizontal scale becomes large. This study
also suggests that, for an initial disturbance
given by surface (interface) elevation, the
energy conversion cannot be generalized for
arbitrary shapes of initial disturbance.
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APPENDIX

The mass conservaiion requires that

L<1+no)=f(1+n)dx

Denoting 5 the mean value of n over the
region o <. x < b, this becomes

L {14 ne)= (14 7)b

Reminding that » (<1} is the same order of
magnitude as 7, (<1}, we can obtain the ex-
pression for b as

sz[l'f‘O(Uo)J

In the baroclinic case same arguments can
be made for lower layer. Similarly, for upper
layer, the mass conservation leads to

L1~ p) = fu-n)dx

For 7 as the mean value of 7 over o <x < a,
we obtuin

a=L{1+0(ne)
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