• Title/Summary/Keyword: Conversion Energy

Search Result 3,331, Processing Time 0.035 seconds

A Study on the Clarance Level for the Metal Waste from the KRR-1 & 2 Decommissioning (연구로 1,2호기 해체 금속폐기물의 규제해제농도기준(안) 도출을 위한 연구)

  • 홍상범;이봉재;정운수
    • Proceedings of the Korean Radioactive Waste Society Conference
    • /
    • 2003.11a
    • /
    • pp.660-664
    • /
    • 2003
  • The exposure dose form recycling on a large amount of the steel scrap from the KRR-1&2 decommissioning activities was evaluated, and also the clearance level was derived. The maximum individual dose and collective dose were evaluated by modifying internal dose conversion factor which was based on the concept of effective dose in ICRP 60, applied to the RESRAD-RECYCLE ver 3.06 computing code, IAEA Safety Series III-P-1.1 and NUREG-1640 as the assessment tool. The result of assessment for individual dose and collective dose is 23.9 ${\mu}Sv$ per year and 0.11 man$\cdot$Sv per year respectively. The clearance levels were ultimately determined by extracting the most conservative value form the results of the generic assessment and specific assessment methodologies. The result of clearance level for radionuclides($Co^60$, $Cs^137$) is less than $1.67{\times}10^{-1}$ Bq/g to comply with the clearance criterion(maximum individual dose : 10 $\muSv$ per year, collective dose : 1 man$\cdot$Sv per year) provided for Korea Atomic Energy Act and relevant regulations.

  • PDF

Pyrolysis Characteristics of the Mixture of Waste Fishing Net and Waste Ship Lubricating Oil (폐어망과 선박용 폐윤활유 혼합물의 열분해반응 특성 연구)

  • Kim, Seung-Soo;Kim, Young-Sik
    • Applied Chemistry for Engineering
    • /
    • v.19 no.5
    • /
    • pp.568-573
    • /
    • 2008
  • Kinetic tests on pyrolysis of waste fishing net [WFN; nylon-6], waste ship lubricating oil [WSLO] and their mixture were carried out by thermogravimetric analysis (TGA) with heating rate of 0.5, 1.0, and $2.0^{\circ}C/min$. Pyrolysis of waste fishing net started at $300^{\circ}C$, and the main region of decomposition temperature was between 360 and $440^{\circ}C$ at each heating rate. Decomposition temperature of the mixture of WFN and WSLO was lower than that of WFN and WSLO, and the shape of thermogravimetic graph of mixture was different as well. The corresponding kinetic parameters including activation energy and pre-exponential factor were determined by differential method over the degree of conversions. The values of activation energies for the mixture of WFN and WSLO were between 98 and 427 kJ/mol as the conversion increased from 5% to 95%. Tubing reactor was used to analysis of pyrolyzed oil at $440^{\circ}C$ for 80 min. The selectivity of specific hydrocarbons was not detected and the carbon number distribution of the pyrolyzed oil was below $C_{22}$.

Effects of Castration and Injection Time of rbST on Dry Matter and Nutrient Intake in Holstein Bulls (거세와 rbST 투여 시기가 Holstein 수소의 건물 및 영양분 섭취량에 미치는 영향)

  • 권응기;김현섭;윤상기;강우성;김병완;김종복;홍병주
    • Journal of The Korean Society of Grassland and Forage Science
    • /
    • v.18 no.1
    • /
    • pp.61-68
    • /
    • 1998
  • This research was canied out to investigate the effect of castration and injection time of sustained release recombinant bovine somatotropin(SR-rbST) on dry matter intake(DM1) and nutrient intake of surgically castrated 32 Holstein young bulls by growth stage. The main results were as follows: 1. DM intakes were not different between in bull and steer groups, but those in rbSTl and rbST2 were 7.88 and 7.65kg respectively, which were lower 6-9% compared to bull and steer groups. 2. Actual DM intake to DM requirement of Beef cattle(NRC) was 88.5~97.7%, while net energy intake was sufficient for NE requirement in all groups during all growth stage except rbST group during fmishing stage. 3. Overall mean concentrate intake to body weight in steer group was the highest as 1.94%, and then those in rbST groups were 1.87~1.89% which were higher 0.07~0.09% unit than in bull group. 4. Feed conversion ratios(DM) in bull, rbSTl and rbST2 groups were 8.29, 8.18 and 7.60kg respectively, which were improved 12.4, 13.9 and 22.6%, respectively, compared to steer group.

  • PDF

An Exploratory Study on the Applicability of Thin-Film Photovoltaic Cells for Auxiliary Power Supply of a Personal Rapid Transit (PRT) Vehicle (PRT 차량의 보조 전력공급을 위한 유연소재 태양전지의 적용 가능성 연구)

  • Kang, Seok-Won;Han, Soo-Jin;Jeong, Rag-Gyo;Oh, Hyuck Keun;Ko, Sangwon;Choi, Dooho
    • Journal of the Korean Society for Railway
    • /
    • v.17 no.2
    • /
    • pp.94-99
    • /
    • 2014
  • Recently, trends in new transportation system development have been primarily focused on sustainable and ecofriendly mobility solutions. The personal rapid transit (PRT) system has been considered a promising candidate in this category; its competitiveness is being improved through convergence with cutting-edge electric vehicle (EV) technologies. However, battery-powered vehicles pose difficult technical challenges in attempts to achieve reliable and efficient operation. In this study, a design approach for a solar-power assisted PRT system is presented with small-scale demonstrations aimed at circumventing challenges facing its adoption, as well as helping speed the transition to electric-powered ground transportation. From the results, it is expected that flexible photovoltaic (PV) cells will be able to supply 11% of the power required by the service equipment installed in a prototype vehicle. In particular, flexible photovoltaic (PV) cells are advantageous in terms of cost, weight, and design considerations. Most importantly, the cells' flexibility and attach-ability are expected to give them great potential for extended application in various areas.

Solution-Processed Nontoxic and Abundant $Cu_2ZnSnS_4$ for Thin-Film Solar Cells

  • Mun, Ju-Ho
    • Proceedings of the Materials Research Society of Korea Conference
    • /
    • 2012.05a
    • /
    • pp.65-65
    • /
    • 2012
  • Copper zinc tin sulfide ($Cu_2ZnSnS_4$, CZTS) is a very promising material as a low cost absorber alternative to other chalcopyrite-type semiconductors based on Ga or In because of the abundant and economical elements. In addition, CZTS has a band-gap energy of 1.4~1.5eV and large absorption coefficient over ${\sim}10^4cm^{-1}$, which is similar to those of $Cu(In,Ga)Se_2$(CIGS) regarded as one of the most successful absorber materials for high efficient solar cell. Most previous works on the fabrication of CZTS thin films were based on the vacuum deposition such as thermal evaporation and RF magnetron sputtering. Although the vacuum deposition has been widely adopted, it is quite expensive and complicated. In this regard, the solution processes such as sol-gel method, nanocrystal dispersion and hybrid slurry method have been developed for easy and cost-effective fabrication of CZTS film. Among these methods, the hybrid slurry method is favorable to make high crystalline and dense absorber layer. However, this method has the demerit using the toxic and explosive hydrazine solvent, which has severe limitation for common use. With these considerations, it is highly desirable to develop a robust, easily scalable and relatively safe solution-based process for the fabrication of a high quality CZTS absorber layer. Here, we demonstrate the fabrication of a high quality CZTS absorber layer with a thickness of 1.5~2.0 ${\mu}m$ and micrometer-scaled grains using two different non-vacuum approaches. The first solution-processing approach includes air-stable non-toxic solvent-based inks in which the commercially available precursor nanoparticles are dispersed in ethanol. Our readily achievable air-stable precursor ink, without the involvement of complex particle synthesis, high toxic solvents, or organic additives, facilitates a convenient method to fabricate a high quality CZTS absorber layer with uniform surface composition and across the film depth when annealed at $530^{\circ}C$. The conversion efficiency and fill factor for the non-toxic ink based solar cells are 5.14% and 52.8%, respectively. The other method is based on the nanocrystal dispersions that are a key ingredient in the deposition of thermally annealed absorber layers. We report a facile synthetic method to produce phase-pure CZTS nanocrystals capped with less toxic and more easily removable ligands. The resulting CZTS nanoparticle dispersion enables us to fabricate uniform, crack-free absorber layer onto Mo-coated soda-lime glass at $500^{\circ}C$, which exhibits a robust and reproducible photovoltaic response. Our simple and less-toxic approach for the fabrication of CZTS layer, reported here, will be the first step in realizing the low-cost solution-processed CZTS solar cell with high efficiency.

  • PDF

Effect of Variable Feed Allowance with Constant Protein Input on Water Quality in Channel Catfish Production Ponds

  • Cho Sung Hwoan
    • Fisheries and Aquatic Sciences
    • /
    • v.1 no.2
    • /
    • pp.192-200
    • /
    • 1998
  • This study was carried out to evaluate the effect of feeding higher protein feeds with lesser amount, but feeding the constant total protein input for all treatments, on water quality and nitrite toxicity in channel catfish ponds. There was no significant difference in survival rate among treatments $(P>0.05)$. Specific growth rate (SGR) for Treatment 1$(28\%\;protein\;and\;100\%\;of\;satiation)$ was significantly higher $(P>0.05)$ than for Treatment 3$(36\%\;protein\;and\;87.5\%\;of\;satiation)$, but not significantly higher than for Treatment 2 $(32\%\;protein\;and\;77.8\%\;of\;satiation)$ at constant digestible energy (DE), 3.08kcal/g (treatments 1, 2 and 3). At constant DE/P (treatments 4, 2 and 5), no significant difference in SGR was observed among treatments. Feed conversion ratio (FCR) slightly improved or improved as dietary protein level increased from $28\%$ to $32\%$ and feed allowance decreased by $12.5\%$, but did not improve as dietary protein level increased from $32\%$ to $36\%$ and feed allowance decreased by $22.2\%$, at constant DE and constant DE/P. There was no significant difference in water quality variables, such as total ammonia nitrogen (TAN), nitrite, chlorophyll a, soluble phosphorous concentrations among treatments, but significant difference in water quality variables over time as amount of feed fed increased $(P<0.0001)$. There was a trend toward increase in TAN and nitrite over time. A strong linear regression was observed between mean total ammonia nitrogen and nitrite for all treatments Y (Nitrite) =$0.04\times (TAN)+0.01$, $R_2=0.89$. Methemoglobin percent in the blood of catifish was not significantly different among treatments. And its mean value was $7.5\%$, which was relatively low, so that it was not serious problem in catfish production pond under these experiment conditions. There was the stronger linear regression between the percentage of Methemoglobin and the molar ratio of nitrite to chloride rather than nitrite alone: $Y\;(Methemoglobin\;\%)\;=\;58.45\;\times\;(NO^{2-}/Cl^-)\;+\;0.41,\;R^2=0.60$. These results indicate that deterioration of water quality has no strong impact on poor weight gain for $36\%$ dietary protein in this study.

  • PDF

Effect of Reaction Conditions for n-Butane Dehydrogenation over Pt-Sn/θ-Al2O3 Catalyst (Pt-Sn/θ-Al2O3 촉매상에서 반응조건에 따른 n-부탄의 탈수소화 반응)

  • Cho, Kyung-Ho;Kang, Seong-Eun;Park, Jung-Hyun;Cho, Jun-Hee;Shin, Chae-Ho
    • Clean Technology
    • /
    • v.18 no.2
    • /
    • pp.162-169
    • /
    • 2012
  • Pt-Sn/${\theta}-Al_2O_3$ catalyst for n-butane dehydrogenation reaction was prepared by incipient wetness method. To confirm the physicochemical properties of Pt-Sn/${\theta}-Al_2O_3$ catalyst, the characterization was performed using X-ray diffraction (XRD), $N_2$ sorption analysis, temperature programmed desorption of $NH_3$ ($NH_3$-TPD), temperature programmed reduction of $H_2$ ($H_2$-TPR) techniques. Also, the catalytic activities of Pt-Sn/${\theta}-Al_2O_3$ for n-butane dehydrogenation was tested as a function of pretreatment temperature, pretreatment time, reaction temperature, and the partial pressure of n-butane and hydrogen. The sum of selectivities to n-butenes consisting of 1-butene, cis-2-butene, and trans-2-butene was almost constant 95% in the range of conversion of n-butane 5-55%. The activation energy calculated from Arrhenius equation was $82.4kJ\;mol^{-1}$ and the reaction orders of n-butane and hydrogen from Power's law were 0.70 and -0.20, respectively.

The Thermal Properties Analysis of the Mixtures Composed with Epoxy Resin and Amine Curing Agent (에폭시 수지/방향족 아민 경화물의 배합비 변화에 따른 열적 특성 분석)

  • Kim, Daeyeon;Kim, Soonchoen;Park, Young-Il;Kim, Young Chul;Lim, Choong-Sun
    • Journal of Adhesion and Interface
    • /
    • v.15 no.3
    • /
    • pp.100-108
    • /
    • 2014
  • In this work, a series of molar ratios composed with YD-128 and DDM were chosen based on the viscosity analysis. The mixtures of YD-128 and DDM with the different molar ratios were cured at $170^{\circ}C$ for 15 min followed by post cure at $190^{\circ}C$ for two hours. The thermal properties of the cured samples were investigated with DSC, TGA, DMA, and TMA. The conversion ratio of the mixtures of YD-128 and DDM (1 : 1.1) was calculated by dividing ${\Delta}H$ obtained from DSC experiments for each cured sample by ${\Delta}H$. The TGA data of the cured samples showed that the thermal stability and thermal degradation activation energy were proportional to the amount of DDM in the mixtures. However, the highest tan ${\delta}$, and the lowest thermal expansion data with DMA and TMA respectively were obtained from the stoichiometric mixture of YD-128 and DDM. Furthermore, the different ratio of mixtures were applied to test specimens to be cured at $170^{\circ}C$ to measure single lap shear strength with universal testing machine.

Photoelectrochemical Properties of Gallium Nitride (GaN) Photoelectrode Using Cobalt-phosphate (Co-pi) as Oxygen Evolution Catalyst (산소발생용 Cobalt-phosphate (Co-pi) 촉매를 이용한 Gallium Nitride (GaN) 광전극의 광전기화학적 특성)

  • Seong, Chaewon;Bae, Hyojung;Burungale, Vishal Vilas;Ha, Jun-Seok
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.27 no.2
    • /
    • pp.33-38
    • /
    • 2020
  • In the photoelectrochemical (PEC) water splitting, GaN is one of the most promising photoanode materials due to high stability in electrolytes and adjustable energy band position. However, the application of GaN is limited because of low efficiency. To improve solar to hydrogen conversion efficiency, we introduce a Cobalt Phosphate (Co-pi) catalyst by photo-electrodeposition. The Co-pi deposition GaN were characterized by SEM, EDS, and XPS, respectively, which illustrated that Co-pi was successfully decorated on the surface of GaN. PEC measurement showed that photocurrent density of GaN was 0.5 mA/㎠ and that of Co-pi deposited GaN was 0.75 mA/㎠. Impedance and Mott-Schottky measurements were performed, and as a result of the measurement, polarization resistance (Rp) and increased donor concentration (ND) values decreased from 50.35 Ω to 34.16 Ω were confirmed. As a result of analyzing the surface components before and after the water decomposition, it was confirmed that the Co-pi catalyst is stable because Co-pi remains even after the water decomposition. Through this, it was confirmed that Co-pi is effective as a catalyst for improving GaN efficiency, and when applied as a catalyst to other photoelectrodes, it is considered that the efficiency of the PEC system can be improved.

Electrochemical Characteristics of Microporous Polymer Electrolytes Based on Poly(vinylidene-co-hexafluoropropylene) (PVdF계 미세기공 고분자 전해질의 전기화학적 특성)

  • Jung Kang-Kook;Kim Jong-Uk;Ahn Jou-Hyeon;Kim Ki-Won;Ahn Hyo-Jun
    • Journal of the Korean Electrochemical Society
    • /
    • v.7 no.4
    • /
    • pp.183-188
    • /
    • 2004
  • In order to develop polymer electrolyte for lithium/sulfur batteries, highly microporous P(VdF-HFP) membranes were prepared by phase inversion method. Porous structure was controlled by extracting NMP with mixture of deionized water and methanol. Porous structure of the membranes was observed with SEM. Polymer electrolytes were prepared by soaking the porous membranes in 1M $LiCF_3SO_3-TEGDME/EC$. The ionic conductivity of polymer electrolyte was found to be at high as $2\times10^{-3}S/cm$ when the polymer membrane extracted by $80\%$ methanol was used. The microporous polymer electrolyte optimized in this work displayed high ionic conductivity, uniform pore size, low interfacial resistance and stable ionic conductivity with storage time. The ionic conductivity of polymer electrolytes was measured with various lithium salts, and the conductivity showed $3.3\times10^{-3}S/cm$ at room temperature when $LiPF_6$ was used as a lithium salt.