• Title/Summary/Keyword: Conversion Energy

Search Result 3,331, Processing Time 0.032 seconds

Photocatalysis: From Environmental Remediation to Energy Conversion (환경, 에너지 분야에서의 광촉매 활용기술)

  • Choe, Ji-Na;Kim, Beom-Sik;Gwon, Sun-Il;Yu, Ji-Seon
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2013.08a
    • /
    • pp.72.1-72.1
    • /
    • 2013
  • 광촉매 활용 기술은 수질 및 대기 중의 난분해성 오염 물질 처리 등의 환경 분야에서부터 항균 및 초친수성 기능을 활용한 소재 분야, 그리고 태양광을 이용한 물분해 수소 제조 및 이산화탄소의 전환 등의 인공 광합성 연구 분야까지 그 응용분야가 대단히 넓은 기술이다. 본 강연에서는 이러한 광촉매의 반응 원리와 대표적인 응용분야인 환경 정화 분야 및 에너지 분야에서의 광촉매 기술의 활용, 그리고 현재 광촉매 관련 연구 분야의 주요 관심사 및 미래 성장을 위한 과제 등을 포괄적으로 다루고자 한다. 광촉매 반응은 반도체의 따간격 에너지 흡수에 따라 전자와 정공(+전하를 가진 전자와 같은 거동을 하는 입자)가 발생한 뒤에 일어나는 계면에서의 전자전달 반응을 기초한다. 발생한 정공과 전자는 각각 산화와 환원 반응을 유발하며 이러한 산화, 환원반응을 통해 다양한 분야로의 응용이 가능하다. 환경 정화 분야의 경우, 정공이 물 혹은 공기 속에 존재하는 수분과 반응하여 생성되는 OH 라디칼 ($OH{\cdot}$)의 강력한 산화력을 주로 이용하게 된다. OH 라디칼에 의한 다양한 난분해성 유기물질의 산화분해 반응을 활용하여 고도처리공정이 가능하게 되며, 수계 난분해성 유기오염물질의 제거뿐만 아니라 대기 중에 존재하는 VOCs, 악취물질 등의 분해도 가능하며, 아울러 바이러스나 박테리아와 같은 세균을 제거할 수 있는 것으로 알려져 있다. 한편, 물 분해 수소제조 및 이산화탄소의 전환과 같은 에너지 분야 응용의 경우, 전도대의 전자를 활용한 환원반응에 기초한다. 앞서 언급한 다양한 응용분야에서 활용될 수 있는 광촉매의 종류 또한 매우 다양하며, 이사화티탄(TiO2)는 대표적인 고효율 상용 광촉매이다. 아울러, 원하는 응용 분야에서의 광활성이 높은 새로운 광촉매의 제조 및 평가가 꾸준히 진행되고 있으며, 그 가운데 태양광의 가장 많은 영역을 차지하고 있는 가시광 활성을 갖는 광촉매 개발에 관한 연구가 활발히 수행되고 있다. 이에, 현재까지 개발된 다양한 가시광 광촉매 시스템에 대한 소개 및 각 광촉매 응용분야에서 최근 새롭게 대두되고 있는 이슈들에 대하여 중점적으로 고찰하고자 한다.

  • PDF

Transient Receptor Potential Cation Channel V1 (TRPV1) Is Degraded by Starvation- and Glucocorticoid-Mediated Autophagy

  • Ahn, Seyoung;Park, Jungyun;An, Inkyung;Jung, Sung Jun;Hwang, Jungwook
    • Molecules and Cells
    • /
    • v.37 no.3
    • /
    • pp.257-263
    • /
    • 2014
  • A mammalian cell renovates itself by autophagy, a process through which cellular components are recycled to produce energy and maintain homeostasis. Recently, the abundance of gap junction proteins was shown to be regulated by autophagy during starvation conditions, suggesting that transmembrane proteins are also regulated by autophagy. Transient receptor potential vanilloid type 1 (TRPV1), an ion channel localized to the plasma membrane and endoplasmic reticulum (ER), is a sensory transducer that is activated by a wide variety of exogenous and endogenous physical and chemical stimuli. Intriguingly, the abundance of cellular TRPV1 can change dynamically under pathological conditions. However, the mechanisms by which the protein levels of TRPV1 are regulated have not yet been explored. Therefore, we investigated the mechanisms of TRPV1 recycling using HeLa cells constitutively expressing TRPV1. Endogenous TRPV1 was degraded in starvation conditions; this degradation was blocked by chloroquine (CLQ), 3MA, or downregulation of Atg7. Interestingly, a glucocorticoid (cortisol) was capable of inducing autophagy in HeLa cells. Cortisol increased cellular conversion of LC3-I to LC-3II, leading autophagy and resulting in TRPV1 degradation, which was similarly inhibited by treatment with CLQ, 3MA, or downregulation of Atg7. Furthermore, cortisol treatment induced the colocalization of GFP-LC3 with endogenous TRPV1. Cumulatively, these observations provide evidence that degradation of TRPV1 is mediated by autophagy, and that this pathway can be enhanced by cortisol.

A Study on the Thermoacoustic Oscillation of an Air Column (기주의 열음향진동에 관한 연구)

  • 권영필;이병호
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.11 no.2
    • /
    • pp.253-261
    • /
    • 1987
  • Thermoacoustic oscillation of an air column induced by heated wires is investigated analytically and experimentally. Acoustic power generation from a single heater wire is estimated based on the result of heat transfer analysis and expressed in terms of the efficiency factor indicating the conversion efficiency from heat to acoustic energy. It is shown that the efficiency factor becomes maximum when the wire radius is the order of the coustic boundary layer thickness and the flow velocity is close to the thermal diffusion velocity. Onset condition of the column oscillation is obtained by equating the acoustic power generation at the heater to the power loss due to thermoviscous dissipation at the tube wall and the convection and radiationloss at the open ends of the tube. In estimating the acoustic power generation, the heater is treated as a stretched single wire by correcting the flow velocity to take into account the interactions between adjacent heater wires. Experiment is performed by using a spiral heater of 1mm diameter in an air column of 37mm diameter. The heat input to drive the oscillation is measured and compared with the theoretical prediction. A good agreement is found between the theory and experiment, which is regarded as a substantial verification of the present analysis.

Optimal Analysis of Irreversible Carnot Cycle Based on Entransy Dissipation (엔트랜시 소산에 기반한 비가역 카르노 사이클의 최적 해석)

  • Kim, Kyoung Hoon
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.41 no.2
    • /
    • pp.87-95
    • /
    • 2017
  • The concept of entransy has been proposed recently as a potential heat transfer mechanism and could be useful in analyzing and optimizing the heat-work conversion systems. This work presents an entransy analysis for the irreversible Carnot cycle by systematic balance formulations of the entransy loss, work entransy, and entransy dissipations, which are consistent with exergy balances. Additionally, several forms of system efficiency are introduced based on entransy for the appreciation of the optimal system performance. The effects of the source temperature and irreversible efficiencies on the optimal conditions for system efficiencies are systematically investigated for both dumping and non-dumping cases of used source fluid. The results show different trends in entransy efficiencies when compared to the conventional efficiencies of energy and exergy, and represent another method to assess the effective use of heat source in power generation systems.

Synthesis of Tricyclopentadiene Using Ionic Liquid Supported Mesoporous Silica Catalysts (이온성 액체가 담지된 메조포로스 실리카 촉매를 이용한 Tricyclopentadiene 합성)

  • Kim, Su-Jung;Jeon, Jong-Ki;Han, Jeongsik;Yim, Jin-Heong
    • Applied Chemistry for Engineering
    • /
    • v.27 no.2
    • /
    • pp.190-194
    • /
    • 2016
  • Tricyclopentadiene (TCPD) is one of the important precursors for making tetrahydrotricyclopentadiene, which is well known as a next-generation fuel with high energy density. In this study, TCPD was obtained by polymerization reaction of dicyclopentadiene (DCPD) using an ionic liquid (IL) supported mesoporous silica catalysts. ILs were supported to two kinds of mesoporous silica catalysts with different pore sizes such as MCM-41 and SBA-15. Four different ILs were supported to mesoporous silicas using anionic precursors such as CuCl or $FeCl_3$ and cationic precursors such as triethylamine hydrochloride or 1-butyl-3-methylimidazolium chloride. We proved that IL supported mesoporous silicas showed better catalytic performance than those of using non-supported prestine IL in the aspect of TCPD yield and DCPD conversion. Among four kinds of IL supported mesoporous silica catalysts, CuCl-based IL supported MCM-41 system showed the highest TCPD yield.

Research Trend of Bio-oil Production from Biomass by using Fast Pyrolysis (바이오매스로부터 급속 열분해를 통한 바이오오일의 생산기술 연구동향)

  • Kim, Jae-Kon;Park, Jo Yong;Yim, Eui Soon;Ha, Jong Han
    • Journal of the Korean Applied Science and Technology
    • /
    • v.31 no.3
    • /
    • pp.453-465
    • /
    • 2014
  • The paper provides a review on bio-oil production technology from biomass by using fast pyrolysis to use heating fuel, power fuel and transport fuel. One of the most promising methods for a small scale conversion of biomass into liquid fuels is fast pyrolysis. In fast pyrolysis, bio-oil is produced by rapidly heating biomass to intermediate temperature ($450{\sim}600^{\circ}C$) in the absence of any external oxygen followed by rapid quenching of the resulting vapor. Bio-oil can be produced in weight yield maximum 75 wt% of the original dry biomass and bio-oils typically contain 60-75% of the initial energy of the biomass. In this study, it is described focusing on the characterization of feedstock, production principle of bio-oil, bio-oil's property and it's application sector.

Differential Power Processing System for the Capacitor Voltage Balancing of Cost-effective Photovoltaic Multi-level Inverters

  • Jeon, Young-Tae;Kim, Kyoung-Tak;Park, Joung-Hu
    • Journal of Power Electronics
    • /
    • v.17 no.4
    • /
    • pp.1037-1047
    • /
    • 2017
  • The Differential Power Processing (DPP) converter is a promising multi-module photovoltaic inverter architecture recently proposed for photovoltaic systems. In this paper, a DPP converter architecture, in which each PV-panel has its own DPP converter in shunt, performs distributed maximum power point tracking (DMPPT) control. It maintains a high energy conversion efficiency, even under partial shading conditions. The system architecture only deals with the power differences among the PV panels, which reduces the power capacity of the converters. Therefore, the DPP systems can easily overcome the conventional disadvantages of PCS such as centralized, string, and module integrated converter (MIC) topologies. Among the various types of the DPP systems, the feed-forward method has been selected for both its voltage balancing and power transfer to a modified H-bridge inverter that needs charge balancing of the input capacitors. The modified H-bridge multi-level inverter had some advantages such as a low part count and cost competitiveness when compared to conventional multi-level inverters. Therefore, it is frequently used in photovoltaic (PV) power conditioning system (PCS). However, its simplified switching network draws input current asymmetrically. Therefore, input capacitors in series suffer from a problem due to a charge imbalance. This paper validates the operating principle and feasibility of the proposed topology through the simulation and experimental results. They show that the input-capacitor voltages maintain the voltage balance with the PV MPPT control operating with a 140-W hardware prototype.

Type-2 Fuzzy Logic Predictive Control of a Grid Connected Wind Power Systems with Integrated Active Power Filter Capabilities

  • Hamouda, Noureddine;Benalla, Hocine;Hemsas, Kameleddine;Babes, Badreddine;Petzoldt, Jurgen;Ellinger, Thomas;Hamouda, Cherif
    • Journal of Power Electronics
    • /
    • v.17 no.6
    • /
    • pp.1587-1599
    • /
    • 2017
  • This paper proposes a real-time implementation of an optimal operation of a double stage grid connected wind power system incorporating an active power filter (APF). The system is used to supply the nonlinear loads with harmonics and reactive power compensation. On the generator side, a new adaptive neuro fuzzy inference system (ANFIS) based maximum power point tracking (MPPT) control is proposed to track the maximum wind power point regardless of wind speed fluctuations. Whereas on the grid side, a modified predictive current control (PCC) algorithm is used to control the APF, and allow to ensure both compensating harmonic currents and injecting the generated power into the grid. Also a type 2 fuzzy logic controller is used to control the DC-link capacitor in order to improve the dynamic response of the APF, and to ensure a well-smoothed DC-Link capacitor voltage. The gained benefits from these proposed control algorithms are the main contribution in this work. The proposed control scheme is implemented on a small-scale wind energy conversion system (WECS) controlled by a dSPACE 1104 card. Experimental results show that the proposed T2FLC maintains the DC-Link capacitor voltage within the limit for injecting the power into the grid. In addition, the PCC of the APF guarantees a flexible settlement of real power exchanges from the WECS to the grid with a high power factor operation.

A Study on Adaptive Operation Control to Stabilize bus Voltage of GEO Satellite Power Supply Module (정지궤도 위성용 전력공급 모듈의 버스 전압 안정화를 위한 최적동작 제어에 관한 연구)

  • Ahn, Tae-Young;Choe, Hyun-Su
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.53 no.2
    • /
    • pp.123-129
    • /
    • 2016
  • In this paper, results of produced PCU(Power Control Unit) prototype was showed by suggesting and maintaining optimal operation status which let the three functional modules automatically operate with its necessity by prioritizing operation process. In order to validate effectiveness of the suggested method, we produced a test PCU and examined the results. PCU consists of S3R(Sequential Switching Shunt Regulator), BCR(Battery Charge Regulator), and BDR(Battery Discharge Regulator): converting photovoltaic power into constant voltage at linked bus voltage; storing dump power in the battery which is an auxiliary energy storage device; and supplying power charged in battery to the load. To maintain its high reliability and optimal condition of these three power conversion modules, each module operates in parallel and stable bus voltage is required to be retained at all-time due to the nature of power supply for satellite.

Methane emission from municipal solid waste dumpsites: A case study of Chennai city in India

  • Srinivasan, Pavithrapriya;Andimuthu, Ramachandran;S.N., Ahamed Ibrahim;Ramachandran, Prasannavenkatesh;Rajkumar, Easwari;Kandasamy, Palanivelu
    • Advances in environmental research
    • /
    • v.9 no.2
    • /
    • pp.97-107
    • /
    • 2020
  • The indiscriminate growth in global population poses a threat to the world in handling and disposal of Municipal solid waste. Rapid urban growth increases the production, consumption and generation of Municipal solid waste which leads to a drastic change in the environment. The methane produced from the Municipal Solid waste accounts for up to 11% global anthropogenic emissions, which is a major cause for global warming. This study reports the methane emission estimation using IPCC default, TNO, LandGEM, EPER and close flux chamber from open dump yards at Perungudi and Kodungaiyur in Chennai, India. The result reveals that the methane emission using close flux chamber was in the range of 8.8 Gg/yr-11.3 Gg/yr and 6.1Gg/yr to 9.1 Gg/yr at Kodungaiyur and Perungudi dump yard respectively. The per capita waste generation was estimated based on waste generation and population. The waste generation potential was projected using linear regression model for the period 2017-2050. The trend of CH4 emission in the actual field measurement were increased every year, similarly the emission trend also increased in IPCC default method (mass balance approach), EPER Germany (zero order decay model) where as TNO and Land GEM (first order decay model) were decreased. The present study reveals that Kodungaiyur dump yard is more vulnerable to methane emission compared to Perungudi dump yard and has more potential in waste to energy conversion mechanisms than compare to Perungudi dump yard.