• 제목/요약/키워드: Conventional radiotherapy planning

검색결과 45건 처리시간 0.022초

CT 재구성에 의한 두경부 종양의 방사선 치료 계획 (Radiotherapy Treatment Planning in Head and Neck Cancer by CT-Reconstruction)

  • 류삼열;박인규
    • Radiation Oncology Journal
    • /
    • 제5권2호
    • /
    • pp.141-148
    • /
    • 1987
  • 방사선 치료의 궁극적인 목적은 정상 조직의 후유증을 최소화하면서 암종의 완전 국소 관해를 도모하는데 있다. 1970년대에 전산화 단층 촬영법이 대두된 후로 환자의 해부학적 정상 조직과 암종의 부위와 침윤 정도를 거의 정확하게 알게 되었고, 표적 암조직에 인체 외부에서 가해지는 방사선의 등선량 곡선을 각 단면에서 확인할 수 있었다. 특히 두경부 종양의 방사선 치료 계획에 있어서 재구성 영상으로 암종과 주위 정상 조직의 상관관계를 삼차원적으로 파악하고 영상 위에서 바로 등 선량 곡선을 볼 수 있으므로 암종에는 관해에 충분한 방사선을 투여하면서 정상 조직 (예, 척수 등)에 가해지는 방사선량을 명확히 알 수 있어 최소한의 선량으로 후유증을 방지할 수 있었다. 이는 축, 종, 횡, 단면의 재구성 영상을 얻어서 이루어질 수 있고 종래의 이차원적인 한 개의 단면에서만 시행하던 치료 계획을 서로 다른 세 개의 단면에서 삼차원적으로 시행함으로서 입체적으로 분포 선량을 추정할 수 있어 두경부 종양 환자의 치료에 더 유익하였다.

  • PDF

자궁 경부암의 방사선 치료계획에서 자기공명 영상을 이용한 조사야 교정 (Treatment Planning Correction Using MRI in the Radiotherapy of Cervical Cancer)

  • 신세원;조길호;박찬원
    • Journal of Yeungnam Medical Science
    • /
    • 제12권2호
    • /
    • pp.203-209
    • /
    • 1995
  • 본 연구는 최근에 개발되어 임상적으로 널리 이용되는 자기공명 영상상을 20명의 자궁 경부암 환자의 치료계획에 적용하여 전통적인 치료계획과 비교하여 아래의 결과를 얻었다. 1. 측방 조사야의 가로길이는 11 cm가 7명(35%)으로 가장 많았으며, 10 cm가 6명(30%), 9 cm와 12 cm가 각각 3명(15%)이었으며 13 cm는 1명(5%)이었다. 2. 측방 조사야의 중심 이동은 자궁의 크기나 골반의 횡경과는 무관하였다. 3. 자기공명 영상을 이용한 방사선치료계획을 한 결과 전통적인 방법으로 결정된 전골반 측방 조사야의 변경이 20명 중 5명(25%)에서 있었으므로 향후 자궁 경부암이나 자궁 체부암의 정확한 치료를 위해서는 자기공명 영상이 매우 중요함을 시사하였으며 향후 더 많은 환자를 대상으로 자기공명 영상을 이용한 방사선치료 성적을 전통적인 방법에 의한 성적과 비교하는 연구가 요구된다.

  • PDF

흉부악성종양(胸部惡性腫瘍)의 방사선치료계획(放射線治療計劃)에 있어서 전산화단층촬영(電算花斷層撮影)의 이용(利用)에 관한 연구(硏究) (Radiotherapy Treatment Planning with Computed Tomography in Malignant Tumors of the Chest-Comparison of various techniques)

  • 이주혁;고경환;하성환;한만청
    • Radiation Oncology Journal
    • /
    • 제1권1호
    • /
    • pp.55-60
    • /
    • 1983
  • To evaluate the usefulness of computed tomography (CT) in radiotherapy treatment planning in malignant tumors of thoracic cage, the computer generated dose distributions were compared between plans based on conventional studies and those based on CT scan. 22 cases of thoracic malignancies, 15 lung cancers and 7 esophageal cancers, diagnosed and treated in Department of Therapeutic Radiology of Seoul National University Hospital from September, 1982 to April, 1983, were analyzed. In lung cancers, dose distribution in plans using AP, PA parallel opposing ports with posterior spinal cord block and in plans using box technique both based on conventional studies were compared with dose distribution using AP, PA and two oblique ports based on CT scan. In esophageal cancers, dose distribution in plans based on conventional studies and those based on CT scans, both using 3 port technique were compared. The results are as follows: 1. Parallel opposing field technique were inadequate in all cases of lung cancers, as portion of primary tumor in 13 of 15 cases and portion of mediastinum in all were out of high dose volume. 2. Box technique was inadequate in 5 of 15 lung cancers as portion of primary tumor was not covered and in every case the irradiated normal lung volume was quite large. 3. Plans based on CT scan were superior to those based on conventional studies as tumor was demarcated better with CT and so complete coverage of tumor and preservation of more normal lung volume could be made. 4. In 1 case of lung cancer, tumor localization was nearly impossible with conventional studies, but after CT scan tumor was more clearly defined and localized. 5. In 1 of 7 esophageal cancers, the radiation volume should be increased for marginal coverage after CT scan. 6. Depth dose correction for tissue inhomogeneity is possible with CT, and exact tumor dose can be calculated. As a result radiotherapy treatment planning based on CT scan has a pteat advantage over that based on conventional studies.

  • PDF

Radiotherapy for gastric mucosa-associated lymphoid tissue lymphoma: dosimetric comparison and risk assessment of solid secondary cancer

  • Bae, Sun Hyun;Kim, Dong Wook;Kim, Mi-Sook;Shin, Myung-Hee;Park, Hee Chul;Lim, Do Hoon
    • Radiation Oncology Journal
    • /
    • 제35권1호
    • /
    • pp.78-89
    • /
    • 2017
  • Purpose: To determine the optimal radiotherapy technique for gastric mucosa-associated lymphoid tissue lymphoma (MALToma), we compared the dosimetric parameters and the risk of solid secondary cancer from scattered doses among anterior-posterior/ posterior-anterior parallel-opposed fields (AP/PA), anterior, posterior, right, and left lateral fields (4_field), 3-dimensional conformal radiotherapy (3D-CRT) using noncoplanar beams, and intensity-modulated radiotherapy composed of 7 coplanar beams (IMRT_co) and 7 coplanar and noncoplanar beams (IMRT_non). Materials and Methods: We retrospectively generated 5 planning techniques for 5 patients with gastric MALToma. Homogeneity index (HI), conformity index (CI), and mean doses of the kidney and liver were calculated from the dose-volume histograms. Applied the Biological Effects of Ionizing Radiation VII report to scattered doses, the lifetime attributable risk (LAR) was calculated to estimate the risk of solid secondary cancer. Results: The best value of CI was obtained with IMRT, although the HI varied among patients. The mean kidney dose was the highest with AP/PA, followed by 4_field, 3D-CRT, IMRT_co, and IMRT_non. On the other hand, the mean liver dose was the highest with 4_field and the lowest with AP/PA. Compared with 4_field, the LAR for 3D-CRT decreased except the lungs, and the LAR for IMRT_co and IMRT_non increased except the lungs. However, the absolute differences were much lower than <1%. Conclusion: Tailored RT techniques seem to be beneficial because it could achieve adjacent organ sparing with very small and clinically irrelevant increase of secondary solid cancer risk compared to the conventional techniques.

골반 림프선을 포함한 전립선암 치료 시 Split VMAT plan의 유용성 평가 (Evaluating efficiency of Split VMAT plan for prostate cancer radiotherapy involving pelvic lymph nodes)

  • 문준기;손상준;김대호;서석진
    • 대한방사선치료학회지
    • /
    • 제27권2호
    • /
    • pp.145-156
    • /
    • 2015
  • 목 적 : 골반 림프선을 포함한 전립선암 치료 시 기존 치료방법인 직장 전체를 윤곽 그리기한 2회전 치료계획(이하 Conventional VMAT plan)과 직장의 선량을 낮추기 위하여 상부와 하부로 나누어 윤곽 그리기한 2회전 치료계획(이하 Split VMAT plan)의 유용성을 비교, 평가하고자 한다. 대상 및 방법 : 본원에서 TrueBeam STX(Varian Medical Systems, USA)를 이용하여, Split VMAT plan으로 방사선치료를 받은 전립선암 환자 9명을 대상으로 하였다. 전산화치료계획은 Eclipse(Ver 10.0.42, Varian, USA), PRO3(Progressive Resolution Optimizer 10.0.28), AAA(Anisotropic Analytic Algorithm Ver 10.0.28) 알고리즘을 사용하였다. 전립선 PTV의 Superior 방향으로 1 cm부터 Inferior방향으로 1 cm까지를 하부 직장으로, 전체 직장에서 직장 하부를 제외한 부분을 상부 직장으로 윤곽 그리기(Contouring) 하였다. 치료계획은 콜리메이터 각도 $30^{\circ}$, $330^{\circ}$, 겐트리 회전반경이 각각 $360^{\circ}$인 두 개의 ARC, 10MV를 이용하였다. 처방 선량은 28회에 걸쳐 동시 추가 분할 선량법(Simultaneous Integrated Boost, SIB)으로 전립선에 총 선량이 각각 63~70 Gy, 골반 림프선에 총 선량이 50.4 Gy가 되도록 하였다. Split VMAT plan을 통해 도출된 전체 직장의 $D_{mean}$를 Conventional VMAT plan에서 전체 직장의 선량용적제한 값으로 설정하여 Conventional VMAT plan을 수립하였고, 그 외에 모든 조건은 동일하게 설정하였다. 모든 치료계획은 최적화 과정에서 나타나는 선량 차이의 무작위성을 최소화하기 위하여 각각 2회의 최적화와 선량 계산 과정을 거쳤으며 전립선 PTV100% = 90% 또는 95%로 Normalize 하였다. 전체 상부 하부 직장의 평균선량, 방광의 평균선량, 상부 직장의 $V_{50%}$, 각 치료 계획의 Total MU, 그리고 PTV의 H.I.(Homogeneity Index), C.I.(Conformity Index)를 평가 지표로 설정하였고, 전자영상유도장치를 이용하여 임상 적용 가능 여부 확인을 위한 IMRT verification QA(Gamma test)를 실시하였다. 결 과 : 두 치료계획의 평균선량을 비교한 결과 전체 직장은 최대 134.4 cGy, 최소 43.5 cGy, 평균 75.6 cGy로, 하부 직장은 최대 100.5 cGy, 최소 -34.6 cGy, 평균 34.3 cGy로, 상부 직장 은 최대 1113.5 cGy, 최소 87.2 cGy, 평균 550.5 cGy로, 방광은 최대 271 cGy, 최소 -55.5 cGy, 평균 117.8 cGy로 모두 Split VMAT plan이 낮은 값을 보였다. 상부 직장의 V50%도 최대 63.4%, 최소 3.2%, 평균 23.2%로 Split VMAT plan이 낮은 것으로 나타났다. Total MU는 Split VMAT plan이 최대 148, 최소 7로, 평균 77 더 많이 사용하는 것으로 나타났다. PTV에 대한 H.I.와 C.I.는 두 치료계획 모두 서로 비슷한 결과를 나타냈다. Split VMAT plan에 대한 IMRT verification QA 결과 2 mm / 2%, Gamma pass rate 90.0% 기준을 모두 통과하였다. 결 론 : 골반 림프선을 포함한 전립선암 치료 시 Split VMAT plan은 Conventional VMAT plan과 비교하여 대부분의 평가지표에서 유리한 것으로 나타냈으며 치료효율을 높이면서 특히 상부 직장 선량을 감소시켜 전체 직장 선량을 낮추는데 탁월한 효과를 나타냈기 때문에 이를 적용시켜 방사선 치료효과를 높이는 것이 중요할 것이라 사료된다.

  • PDF

Basic Physical Principles and Clinical Applications of Computed Tomography

  • Jung, Haijo
    • 한국의학물리학회지:의학물리
    • /
    • 제32권1호
    • /
    • pp.1-17
    • /
    • 2021
  • The evolution of X-ray computed tomography (CT) has been based on the discovery of X-rays, the inception of the Radon transform, and the development of X-ray digital data acquisition systems and computer technology. Unlike conventional X-ray imaging (general radiography), CT reconstructs cross-sectional anatomical images of the internal structures according to X-ray attenuation coefficients (approximate tissue density) for almost every region in the body. This article reviews the essential physical principles and technical aspects of the CT scanner, including several notable evolutions in CT technology that resulted in the emergence of helical, multidetector, cone beam, portable, dual-energy, and phase-contrast CT, in integrated imaging modalities, such as positron-emission-tomography-CT and single-photon-emission-computed-tomography-CT, and in clinical applications, including image acquisition parameters, CT angiography, image adjustment, versatile image visualizations, volumetric/surface rendering on a computer workstation, radiation treatment planning, and target localization in radiotherapy. The understanding of CT characteristics will provide more effective and accurate patient care in the fields of diagnostics and radiotherapy, and can lead to the improvement of image quality and the optimization of exposure doses.

Dosimetric Comparison of Three-Dimensional Conformal, Intensity-Modulated Radiotherapy, Volumetric Modulated Arc Therapy, and Dynamic Conformal Arc Therapy Techniques in Prophylactic Cranial Irradiation

  • Ismail Faruk Durmus;Dursun Esitmez;Guner Ipek Arslan;Ayse Okumus
    • 한국의학물리학회지:의학물리
    • /
    • 제34권4호
    • /
    • pp.41-47
    • /
    • 2023
  • Purpose: This study aimed to dosimetrically compare the technique of three-dimensional conformal radiotherapy (3D CRT), which is a traditional prophylactic cranial irradiation method, and the intensity-modulated radiotherapy (IMRT) and volumetric modulated arc therapy (VMAT) techniques used in the last few decades with the dynamic conformal arc therapy (DCAT) technique. Methods: The 3D CRT, VMAT, IMRT, and DCAT plans were prepared with 25 Gy in 10 fractions in a Monaco planning system. The target volume and the critical organ doses were compared. A comparison of the body V2, V5, and V10 doses, monitor unit (MU), and beam on-time values was also performed. Results: In planned target volume of the brain (PTVBrain), the highest D99 dose value (P<0.001) and the most homogeneous (P=0.049) dose distribution according to the heterogeneity index were obtained using the VMAT technique. In contrast, the lowest values were obtained using the 3D CRT technique in the body V2, V5, and V10 doses. The MU values were the lowest when DCAT (P=0.001) was used. These values were 0.34% (P=0.256) lower with the 3D CRT technique, 66% (P=0.001) lower with IMRT, and 72% (P=0.001) lower with VMAT. The beam on-time values were the lowest with the 3D CRT planning (P<0.001), 3.8% (P=0.008) lower than DCAT, 65% (P=0.001) lower than VMAT planning, and 76% (P=0.001) lower than IMRT planning. Conclusions: Without sacrificing the homogeneous dose distribution and the critical organ doses in IMRTs, three to four times less treatment time, less low-dose volume, less leakage radiation, and less radiation scattering could be achieved when the DCAT technique is used similar to conventional methods. In short, DCAT, which is applicable in small target volumes, can also be successfully planned in large target volumes, such as the whole-brain.

첨단 암 치료로서 중입자치료의 임상적 유용성에 대한 고찰 (Literature Review of Clinical Usefulness of Heavy Ion Particle as an New Advanced Cancer Therapy)

  • 최상규
    • 대한방사선기술학회지:방사선기술과학
    • /
    • 제42권6호
    • /
    • pp.413-422
    • /
    • 2019
  • Heavy ion particle, represented carbon ion, radiotherapy is currently most advanced radiation therapy technique. Conventional radiation therapy has made remarkable changes over a relatively short period of time and leading various developments such as intensity modulated radiation therapy, 4D radiation therapy, image guided radiation therapy, and high precisional therapy. However, the biological and physical superiority of particle radiation, represented by Bragg peak, can give the maximum dose to tumor and minimal dose to surrounding normal tissues in the treatment of cancers in various areas surrounded by radiation-sensitive normal tissues. However, despite these advantages, there are some limitations and factors to consider. First, there is not enough evidence, such as large-scale randomized, prospective phase III trials, for the clinical application. Secondly, additional studies are needed to establish a very limited number of treatment facilities, uncertainty about the demand for heavy particle treatment, parallel with convetional radiotherapy or indications. In addition, Bragg peak of the heavy particles can greatly reduce the dose to the normal tissues front and behind the tumor compared to the photon or protons. High precision and accuracy are needed for treatment planning and treatment, especially for lungs or livers with large respiratory movements. Currently, the introduction of the heavy particle therapy device is in progress, and therefore, it is expected that more research will be active.

The Role of Modern Radiotherapy Technology in the Treatment of Esophageal Cancer

  • Moon, Sung Ho;Suh, Yang-Gun
    • Journal of Chest Surgery
    • /
    • 제53권4호
    • /
    • pp.184-190
    • /
    • 2020
  • Radiation therapy (RT) has improved patient outcomes, but treatment-related complication rates remain high. In the conventional 2-dimensional and 3-dimensional conformal RT (3D-CRT) era, there was little room for toxicity reduction because of the need to balance the estimated toxicity to organs at risk (OARs), derived from dose-volume histogram data for organs including the lung, heart, spinal cord, and liver, with the planning target volume (PTV) dose. Intensity-modulated RT (IMRT) is an advanced form of conformal RT that utilizes computer-controlled linear accelerators to deliver precise radiation doses to the PTV. The dosimetric advantages of IMRT enable better sparing of normal tissues and OARs than is possible with 3D-CRT. A major breakthrough in the treatment of esophageal cancer (EC), whether early or locally advanced, is the use of proton beam therapy (PBT). Protons deposit their highest dose of radiation at the tumor, while leaving none behind; the resulting effective dose reduction to healthy tissues and OARs considerably reduces acute and delayed RT-related toxicity. In recent studies, PBT has been found to alleviate severe lymphopenia resulting from combined chemo-radiation, opening up the possibility of reducing immune suppression, which might be associated with a poor prognosis in cases of locally advanced EC.

Volumetric modulated arc therapy for carotid sparing in the management of early glottic cancer

  • Kim, Young Suk;Lee, Jaegi;Park, Jong In;Sung, Wonmo;Lee, Sol Min;Kim, Gwi Eon
    • Radiation Oncology Journal
    • /
    • 제34권1호
    • /
    • pp.18-25
    • /
    • 2016
  • Purpose: Radiotherapy of the neck is known to cause carotid artery stenosis. We compared the carotid artery dose received between volumetric modulated arc therapy (VMAT) and conventional fixed-field intensity-modulated radiotherapy (IMRT) plans in patients with early glottic cancer. Materials and Methods: Twenty-one early glottic cancer patients who previously underwent definitive radiotherapy were selected for this study. For each patient, double arc VMAT, 8-field IMRT, 3-dimensional conformal radiotherapy (3DCRT), and lateral parallel-opposed photon field radiotherapy (LPRT) plans were created. The 3DCRT plan was generated using lateral parallel-opposed photon fields plus an anterior photon field. VMAT and IMRT treatment plan optimization was performed under standardized conditions to obtain adequate target volume coverage and spare the carotid artery. Dose-volume specifications for the VMAT, IMRT, 3DCRT, and LPRT plans were calculated with radiotherapy planning system. Monitor units (MUs) and delivery time were measured to evaluate treatment efficiency. Results: Target volume coverage and homogeneity results were comparable between VMAT and IMRT; however, VMAT was superior to IMRT for carotid artery dose sparing. The mean dose to the carotid arteries in double arc VMAT was reduced by 6.8% compared to fixed-field IMRT (p < 0.001). The MUs for VMAT and IMRT were not significantly different (p = 0.089). VMAT allowed an approximately two-fold reduction in treatment delivery time in comparison to IMRT (3 to 5 minutes vs. 5 to 10 minutes). Conclusion: VMAT resulted in a lower carotid artery dose compared to conventional fixed-field IMRT, and maintained good target coverage in patients with early glottic cancer.