• Title/Summary/Keyword: Conventional Genetic Algorithm

Search Result 478, Processing Time 0.027 seconds

Optimal Design of Composite Laminated Stiffened Structures Using micro Genetic Algorithm (마이크로 유전자 알고리즘을 이용한 복합재 적층 구조물의 최적설계)

  • Yi, Moo-Keun;Kim, Chun-Gon
    • Proceedings of the Korean Society For Composite Materials Conference
    • /
    • 2005.11a
    • /
    • pp.268-271
    • /
    • 2005
  • Researches based on genetic algorithms have been performed in composite laminated structures optimization since 1990. However, conventional genetic algorithms have a disadvantage that its augmentation of calculation costs. A lot of variations have been proposed to improve the performance and efficiency, and micro genetic algorithm is one of them. In this paper, micro Genetic Algorithm was employed in the optimization of laminated stiffened composite structures to maximize the linear critical buckling load and the results from both conventional genetic algorithm and micro genetic algorithm were compared.

  • PDF

Adaptive control with multiple model (using genetic algorithm)

  • Kwon, Seong-Chul;Park, Juhyun;Won, Sangchul
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1996.10b
    • /
    • pp.331-334
    • /
    • 1996
  • It is a well-known problem that the adaptive control has a poor transient response. In order to improve this problem, the scheme that model-reference adaptive control (MRAC) uses the genetic algorithm (GA) in the search for parameters is proposed. Use genetic algorithm (GA) in the searching for controller's parameters set and conventional gradient method for fine tuning. And show the reduction of the oscillations in transient response comparing with the conventional MRAC.

  • PDF

A study on Improved Genetic Algorithm to solve nonlinear optimization problems (비선형 최적화문제의 해결을 위한 개선된 유전알고리즘의 연구)

  • 우병훈;하정진
    • Korean Management Science Review
    • /
    • v.13 no.1
    • /
    • pp.97-109
    • /
    • 1996
  • Genetic Algorithms have been successfully applied to various problems (for example, engineering design problems with a mix of continuous, integer and discrete design variables) that could not have been readily solved with traditional computational techniques. But, several problems for which conventional Genetic Algorithms are ill defined are premature convergence of solution and application of exterior penalty function. Therefore, we developed an Improved Genetic Algorithms (IGAs) to solve above two problems. As a case study, IGAs is applied to several nonlinear optimization problems and it is proved that this algorithm is very useful and efficient in comparison with traditional methods and conventional Genetic Algorithm.

  • PDF

Feature Selection and Performance Analysis using Quantum-inspired Genetic Algorithm (양자 유전알고리즘을 이용한 특징 선택 및 성능 분석)

  • Heo, G.S.;Jeong, H.T.;Park, A.;Baek, S.J.
    • Smart Media Journal
    • /
    • v.1 no.1
    • /
    • pp.36-41
    • /
    • 2012
  • Feature selection is the important technique of selecting a subset of relevant features for building robust pattern recognition systems. Various methods have been studied for feature selection from sequential search algorithms to stochastic algorithms. In this work, we adopted a Quantum-inspired Genetic Algorithm (QGA) which is based on the concept and principles of quantum computing such as Q-bits and superposition of state for feature selection. The performance of QGA is compared to that of the Conventional Genetic Algorithm (CGA) with respect to the classification rates and the number of selected features. The experimental result using UCI data sets shows that QGA is superior to CGA.

  • PDF

A Genetic Algorithm with a Mendel Operator for Multimodal Function Optimization (멀티모달 함수의 최적화를 위한 먼델 연산 유전자 알고리즘)

  • Song, In-Soo;Shim, Jae-Wan;Tahk, Min-Jae
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.6 no.12
    • /
    • pp.1061-1069
    • /
    • 2000
  • In this paper, a new genetic algorithm is proposed for solving multimodal function optimization problems that are not easily solved by conventional genetic algorithm(GA)s. This algorithm finds one of local optima first and another optima at the next iteration. By repeating this process, we can locate all the local solutions instead of one local solution as in conventional GAs. To avoid converging to the same optimum again, we devise a new genetic operator, called a Mendel operator which simulates the Mendels genetic law. The proposed algorithm remembers the optima obtained so far, compels individuals to move away from them, and finds a new optimum.

  • PDF

Hybrid Genetic Algorithm Reinforced by Fuzzy Logic Controller (퍼지로직제어에 의해 강화된 혼합유전 알고리듬)

  • Yun, Young-Su
    • Journal of Korean Institute of Industrial Engineers
    • /
    • v.28 no.1
    • /
    • pp.76-86
    • /
    • 2002
  • In this paper, we suggest a hybrid genetic algorithm reinforced by a fuzzy logic controller (flc-HGA) to overcome weaknesses of conventional genetic algorithms: the problem of parameter fine-tuning, the lack of local search ability, and the convergence speed in searching process. In the proposed flc-HGA, a fuzzy logic controller is used to adaptively regulate the fine-tuning structure of genetic algorithm (GA) parameters and a local search technique is applied to find a better solution in GA loop. In numerical examples, we apply the proposed algorithm to a simple test problem and two complex combinatorial optimization problems. Experiment results show that the proposed algorithm outperforms conventional GAs and heuristics.

Structural reliability analysis using response surface method with improved genetic algorithm

  • Fang, Yongfeng;Tee, Kong Fah
    • Structural Engineering and Mechanics
    • /
    • v.62 no.2
    • /
    • pp.139-142
    • /
    • 2017
  • For the conventional computational methods for structural reliability analysis, the common limitations are long computational time, large number of iteration and low accuracy. Thus, a new novel method for structural reliability analysis has been proposed in this paper based on response surface method incorporated with an improved genetic algorithm. The genetic algorithm is first improved from the conventional genetic algorithm. Then, it is used to produce the response surface and the structural reliability is finally computed using the proposed method. The proposed method can be used to compute structural reliability easily whether the limit state function is explicit or implicit. It has been verified by two practical engineering cases that the algorithm is simple, robust, high accuracy and fast computation.

A V­Groove $CO_2$ Gas Metal Arc Welding Process with Root Face Height Using Genetic Algorithm

  • Ahn, S.;Rhee, S.
    • International Journal of Korean Welding Society
    • /
    • v.3 no.2
    • /
    • pp.15-23
    • /
    • 2003
  • A genetic algorithm was applied to an arc welding process to determine near optimal settings of welding process parameters which produce good weld quality. This method searches for optimal settings of welding parameters through systematic experiments without a model between input and output variables. It has an advantage of being able to find optimal conditions with a fewer number of experiments than conventional full factorial design. A genetic algorithm was applied to optimization of weld bead geometry. In the optimization problem, the input variables were wire feed rate, welding voltage, and welding speed, root opening and the output variables were bead height, bead width, penetration and back bead width. The number of level for each input variable is 8, 16, 8 and 3, respectively. Therefore, according to the conventional full factorial design, in order to find the optimal welding conditions, 3,072 experiments must be performed. The genetic algorithm, however, found the near optimal welding conditions from less than 48 experiments.

  • PDF

Determination on Optima Condition for a Gas Metal Arc Welding Process Using Genetic Algorithm (유전 알고리즘을 이용한 가스 메탈 아크 용접 공정의 최적 조건 설정에 관한 연구)

  • 김동철;이세헌
    • Journal of Welding and Joining
    • /
    • v.18 no.5
    • /
    • pp.63-69
    • /
    • 2000
  • A genetic algorithm was applied to an arc welding process to determine near optimal settings of welding process parameters which produce good weld quality. This method searches for optimal settings of welding parameters through systematic experiments without a model between input and output variables. It has an advantage of being able to find optimal conditions with a fewer number of experiments than conventional full factorial design. A genetic algorithm was applied to optimization of weld bead geometry. In the optimization problem, the input variables was wire feed rate, welding voltage, and welding speed and the output variables were bead height, bead width, and penetration. The number of level for each input variable is 16, 16, and 8, respectively. Therefore, according to the conventional full factorial design, in order to find the optimal welding conditions, 2048 experiments must be performed. The genetic algorithm, however, found the near optimal welding conditions from less than 40 experiments.

  • PDF

Determination of optimal Conditions for a Gas Metal Arc Wending Process Using the Genetic Algorithm

  • Kim, D.;Rhee, S.
    • International Journal of Korean Welding Society
    • /
    • v.1 no.1
    • /
    • pp.44-50
    • /
    • 2001
  • A genetic algorithm was applied to the arc welding process as to determine the near-optimal settings of welding process parameters that produce the good weld quality. This method searches for optimal settings of welding parameters through the systematic experiments without the need for a model between the input and output variables. It has an advantage of being capable to find the optimal conditions with a fewer number of experiments rather than conventional full factorial designs. A genetic algorithm was applied to the optimization of the weld bead geometry. In the optimization problem, the input variables were wire feed rate, welding voltage, and welding speed. The output variables were the bead height bead width, and penetration. The number of levels for each input variable is 16, 16, and 8, respectively. Therefore, according to the conventional full factorial design, in order to find the optimal welding conditions,2048 experiments must be performed. The genetic algorithm, however, found the near optimal welding conditions in less than 40 experiments.

  • PDF