• Title/Summary/Keyword: Convective condition

Search Result 171, Processing Time 0.026 seconds

A study on convective heat transfer with microcapsulated lauric acid slurry in circular pipe (미립피복 로릭산 슬러리의 관내 대류 열전달에 관한 연구)

  • Jeong, Dong-Ju;Choi, Eun-Soo
    • Proceedings of the KSME Conference
    • /
    • 2003.04a
    • /
    • pp.1554-1559
    • /
    • 2003
  • The objective of the present study is to reveal thermal characteristic of microcapsulated lauric acid slurry, which have high latent heat during phase change from solid to liquid, in circular pipe. Test were performed with microcapsulated lauric acid slurry in a heating test section with a constant heat flux boundary condition. Local Nusselt number and the effective thermal capacity were measured. As the size of microcapsulated lauric acid were increased, Local Nusselt number of microcapsulated lauric acid slurry were increased. The effective thermal capacity of microcapsulated lauric acid slurry was 0.5 times than it of water

  • PDF

Analysis of a Convective, Radiating Rectangular Fin (대류, 복사 사각 핀의 해석)

  • Kang, Hyung-Suk;Kim, Jong-Ug
    • Journal of Industrial Technology
    • /
    • v.26 no.B
    • /
    • pp.29-34
    • /
    • 2006
  • A convective, radiating rectangular fin is analysed by using the one dimensional analytic method. Instead of constant fin base temperature, heat conduction from the inner wall to the fin base is considered as the fin base boundary condition. Radiation heat transfer is approximately linearized. For different fin tip length, temperature profile along the normalized fin position is shown. The fin tip length for 98% of the maximum heat loss with the variations of fin base length and radiation characteristic number is listed. The maximum heat loss is presented as a function of the fin base length, radiation characteristic number and Biot number.

  • PDF

Nonsteady Plane-strain Ideal Forming without Elastic Dead-zone

  • Chung, Kwansoo;Lee, Wonoh;Kang, Tae Jin;Youn, Jae Ryoun
    • Fibers and Polymers
    • /
    • v.3 no.3
    • /
    • pp.120-127
    • /
    • 2002
  • Ever since the ideal forming theory has been developed for process design purposes, application has been limited to sheet forming and, for bulk forming, to two-dimensional steady flow. Here, application for the non-steady case was made under the plane-strain condition. In the ideal flow, material elements deform fellowing the minimum plastic work path (or mostly proportional true strain path) so that the ideal plane-strain flow can be effectively described using the two-dimensional orthogonal convective coordinate system. Besides kinematics, schemes to optimize preform shapes for a prescribed final part shape and also to define the evolution of shapes and frictionless boundary tractions were developed. Discussions include numerical calculations made for a real automotive part under forging.

A Study on Convective Heat Transfer of Microcapsulated Lauric Acid Slurry in Laminar Flows Through a Circular Pipe (미립피복 로릭산 슬러리의 층류 관내 대류 열전달에 관한 연구)

  • Choi Eunsoo;Jung Dongju
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.16 no.11
    • /
    • pp.1006-1012
    • /
    • 2004
  • The objective of the present study is to reveal thermal characteristic of micro-capsulated lauric acid slurry, which has high latent heat during phase change from solid to liquid, in circular pipe. Tests were performed with the microcapsulated lauric acid slurry in the heating test section with a constant heat flux boundary condition. Local Nusselt number and the effective thermal capacity were measured. As the sizes of microcapsulated lauric acids were increased, local Nusselt numbers of microcapsulated lauric acid slurries were increased. The effective thermal capacity of microcapsulated lauric acid slurry was 1.43 times larger than that of water.

Convective Heat Transfer of a Paraffin Slurry in a Drag Reducing Carrier Fluid (유동저항 감소유체를 운반유체로 한 파라핀 슬러리의 대류 열전달에 관한 연구)

  • 정동주;최은수
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.13 no.12
    • /
    • pp.1275-1281
    • /
    • 2001
  • Aqueous polymer solutions are known to have small pressure reduction. Paraffin slurries are known to have high thermal capacity. Paraffin particles are mixed into an aqueous polymer solution to make a new heat transfer fluid having high thermal capacity but low pressure reduction. The heat transfer characteristics of the new slurry was tested in a circular tube having a constant heat transfer boundary condition. The new slurry was found to have high Nusselt numbers as well as high thermal capacity and low pressure reduction in the laminar flow. The trends of the Nusselt numbers along the heating test section were studied for various heating conditions.

  • PDF

Effects of Thermal Interaction on Natural Convection From Discrete Heat Sources Mounted on a Vertical Plate (수직평판에 부착된 불연속 열원에 의한 자연대류에서 열원간의 열적 상호간섭에 관한 연구)

  • Park, H.S.;Choo, H.L.;Riu, K.J.
    • Solar Energy
    • /
    • v.18 no.4
    • /
    • pp.39-47
    • /
    • 1998
  • The natural convection heat transfer in a vertical plate with discrete heat sources was studied experimentally. The particular interest was the thermal interaction of the heat sources. In this study, the radiative and conductive heat transfer were considered as heat loss, Thus, the net convective heat transfer rate was presented as adiabatic temperature and thermal wake function. As a results, for non-uniform heating condition, heat input ratio(q1/q2) was most dominant parameter for the thermal wake function. The convective heat transfer rate is decreased with the increasing of channel ratio. For the range of $7.50{\times}10^5<Rac<8.66{\times}10^6$, a useful correlation was proposed as a function of channel Rayleigh number.

  • PDF

Segregated finite element method by introducing a improved open boundary condition (개선된 개방경계조건을 도입한 분리유한요소법)

  • Oh, Seung-Hun;Min, Tae-Gee;Yoo, Jung-Yul
    • Proceedings of the KSME Conference
    • /
    • 2000.04b
    • /
    • pp.698-703
    • /
    • 2000
  • In a computational fluid dynamics, the imposition of open boundary condition has an important part of the accuracy but it is not easy to find the optimal boundary rendition. This difficult is introduced by making artificial boundary in unbounded domairs. Such open boundary requires us to ensure the continuity of all primitive variables because the nature is in continuum. Here we introduce a revised well-conditioned open boundary condition particularly in FEM and apply it to various problems-entrainment, body force, short domains.

  • PDF

Optimization of the Heat Input Condition on Arc Welding (아아크 용접시 입열 조건의 최적화에 관한 연구)

  • 박일철;박경진;엄기원
    • Journal of Welding and Joining
    • /
    • v.10 no.2
    • /
    • pp.32-42
    • /
    • 1992
  • A method of optimization of process parameters in Arc Welding has been discussed in this paper. The method of investigation is based on the numerical calculation of weld bead by a finite element method and non-linear optimization technique is applied to estimated the optimization process parameters from the numerical calculation. The common package program(ANSYS 4.4A) was used to obtain the process parameters for a thin plate arc welding (TIG, CO$_{2}$). The results on some test are satisfactory and the used method of this paper is a useful guide to the optimum welding condition.

  • PDF

Travelling Magnetic Field Problem Analyses by Finite Element Method (운동자계문제의 해석을 위한 유한요소법에 관한 연구)

  • Han, Pil-Wan;Lee, Ju
    • Proceedings of the KIEE Conference
    • /
    • 1999.07a
    • /
    • pp.76-78
    • /
    • 1999
  • This paper presents Galerkin- and Upwind-finite element analyses solution in the travelling magnetic filed problem. The travelling magnetic field problem is subject to convective- diffusion equation. Therefore, the solution derived from Galerkin-FEM with linear interpolation function may oscillate between the adjacent nodes. A simple model with Derichlet, Noumann and periodic boundary condition respectively, have been analyzed to investigate stabilities of solutions. It is concluded that the solution of Galerkin-FEM may oscillate according to boundary condition and element type, but that of Upwind-FEM is stable regardless boundary condition.

  • PDF

Numerical Simulation of Ground Heat Exchanger Embedded Pile Considering Unsaturated Soil Condition (불포화 지반 조건을 고려한 파일 매입형 열교환기의 수치해석)

  • Choi, Jung-Chan;Lee, Seung-Rae
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2010.03a
    • /
    • pp.213-220
    • /
    • 2010
  • This study presents a numerical simulation model of vertical ground heat exchangers, considering unsaturated hydro static ground conditions induced by the ground water table fluctuation. Heat transfer in ground and grout is modeled by a 3-D FEM transient conductive heat transfer model, where heat transfer between circulating fluid and heat exchanging pipe is treated as 1-D quasi steady state forced convective elements. To take into account the unsaturated ground condition, soil thermal conductivity and heat capacity which are dependent on the matric suction are applied to ground elements. Parametric studies considering various ground water table conditions are conducted to investigate the influence of unsaturated hydro static ground condition on the mean heat exchange rate of ground heat exchanger. Simulation results considering water table fluctuation show 60~100% of mean heat exchange rate for a saturated soil condition and 125~208% of that for a dry soil condition. Thus consideration of unsaturated soil condition is substantially recommended for more accurate design and performance evaluation for ground heat exchangers.

  • PDF