• Title/Summary/Keyword: Convection number

Search Result 629, Processing Time 0.025 seconds

The Natural Convection in Horizontal Porous Layer with Vertical or Horizontal Throughflow (수직$\cdot$수평 관통류를 갖는 수평 다공층에서 자연대류 연구)

  • Seo S. J.;Park C. K.
    • Journal of computational fluids engineering
    • /
    • v.3 no.1
    • /
    • pp.73-81
    • /
    • 1998
  • The effect of vertical or horizontal throughflow on natural convection in horizontal porous layer was investigated. The computations were performed by employing Darcy-Brinkman-Forchheimer equation to consider the effect of inertia and viscous effect. The patterns of streamlines and isotherms are observed by changing the strength of throughflow. The vertical throughflow stabilizes the natural convection in porous layer. It also disturbs the developing vertical and horizontal velocity component of natural convection cell and increases the critical modified Rayleigh number. The horizontal throughflow influences the stabilization of natural convection in porous layer much more than the vertical throughflow. And it changes a stable convection into a oscillatory convection.

  • PDF

Topological Optimization of Heat Dissipating Structure with Forced Convection (강제 대류를 통한 열소산 구조물의 위상최적화)

  • Yoon, Gil-Ho
    • Proceedings of the KSME Conference
    • /
    • 2008.11a
    • /
    • pp.408-409
    • /
    • 2008
  • This paper presents a new development for topology optimization of heat-dissipating structure with forced convection. To cool down electric devices or machines, two types of convection models have been widely used: Natural convection model with a large Archimedes number and Forced convection with a small Archimedes number. Nowadays, many engineering application areas such as electrochemical conversion device or fuel cell devices adopt the forced convection to transfer generated heat. Therefore, to our knowledge, it becomes an important issue to design flow channels inside which generated heat transfer. Thus, this paper studies optimal topological designs considering fluid-heat interaction. To consider the effect of the advection in the heat transfer problem, the incompressible Navier-stokes equation is solved. This paper numerically studies the coupling phenomena and presents optimal channel design considering forced convection.

  • PDF

A study of Heat Transfer Enhancement by Temperature Driven Marangoni Convection (온도차 마랑고니 대류에 의한 열전달 촉진에 관한 연구)

  • 김종윤;이동호;박종화;최국광
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.15 no.10
    • /
    • pp.795-801
    • /
    • 2003
  • The primary object of this study is to obtain a basic knowledge of heat transfer enhancement mechanism as affected by temperature driven Marangoni convection. Experiments is achieved to visualize the enhanced heat transfer phenomena by the effect of Marangoni convection through the laser holographic interferometry. Also Nusselt Number is introduced for the relation of Marangoni Number.

The natural convection in a three dimensional enclosure using color capturing technique and computation (색상 포착 기법과 수치계산을 이용한 3차원 밀폐 공간내의 자연대류 연구)

  • Lee, Gi-Baek;Kim, Tae-Yeong;Yang, Jang-Sik
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.21 no.12
    • /
    • pp.1595-1607
    • /
    • 1997
  • The natural convection of a horizontal layer heated from below in a three-dimensional rectangular enclosure was dealt with both numerically and experimentally. The aspect ratios are 1:2:3.5 and Boussinesq fluid is water with the Prandtl number of 5.0. This experimental study showed how to measure the variation of temperature field in a 3-D rectangular enclosure with small aspect ratios by using TLC(Thermochromic Liquid Crystal) and color capturing technique. The experimental temperature field had periodic characteristics of 75 sec at Ra=2.37*10$^{5}$ . But the numerical convection flow had periodic characteristics of 79 sec at the same Rayleigh number. In three dimensional computation it was found that the convection roll structure bifurcated from four rolls to two rolls as the Rayleigh number is increased.

Natural Convection in Shallow Cavities

  • Bae, Dae-Seok
    • International Journal of Air-Conditioning and Refrigeration
    • /
    • v.6
    • /
    • pp.158-167
    • /
    • 1998
  • Natural convection heat transfer in a rectangular enclosure is investigated numerically for low aspect ratio(height/width) cavities. Numerical results are obtained for aspect ratios between ${10}^{-2}$ and ${10}^0$, Rayleight numbers from ${10}^3$ to ${10}^7$ and Prandtl numbers from 10$^{-2}$ to 10$^3$. Results are compared with existing analytical and experimental results. A heat transfer correlation is developed to predict the mean Nusselt number as a function of the three governing dimensionless parameters: Rayleigh number, aspect ratio and Prandtl number.

  • PDF

A Numerical Study on Mixed Convection in Boundary Layer Flows over Inclined Surfaces (경사진 평판 주위에서 경계층유동의 혼합대류에 관한 연구)

  • 김동현;최영기
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.14 no.3
    • /
    • pp.725-733
    • /
    • 1990
  • An analysis of laminar mixed convection flow adjacent to the inclined flat surface which is subjected to a uniform temperature in a uniform free stream is performed. Nonsimilar boundary layed equation are derived by using the mixed convection parameters such that smooth transition from the purely forced convection limit to the purely free convection limit is possible. The governing equations are solved by a finite difference method using the coupled box scheme of sixth order. Numerical results are presented for prandtl numbers of 0.7 and 7 with the angle of inclination ranging from 0 to 90 degree from the vertical. The velocity distributions for the buoyancy assisting flow exhibit a significant overshoot above the free stream value in the region of intense mixed convection and the velocity field is found to be more sensitive to the buoyancy effect than the temperature field. The separation point near the wall was obtained for the buoyancy opposing flow. The local Nusselt number increases for buoyancy assisting flow and decreases for opposing flow with increasing value of the local Grashoff number in the mixed convection parameter. For large Prandtl number, the Nusselt number and the friction factor decrease significantly near the separation point. Present numerical predictions are in good agreement with recent experimental results by Ramachandran.

Convection Heat-Transfer Characteristics of Ondol-Heated Room (온돌난방공간(溫突暖房空間)의 내표면(內表面) 대류열전달특성(對流熱傳達特性)에 관(關)한 연구(硏究))

  • Sohn, J.Y.;Ahn, B.W.
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.3 no.5
    • /
    • pp.376-385
    • /
    • 1991
  • The purpose of this paper is to propose basic data on convection heat-transfer coefficients in Ondol-heated room. Surface temperatures and several temperatures around each inside surface of wall, floor and ceiling composed of heating room are measured vertically in Ondol-heated model rooms, and the vertical temperature profiles could be expressed by nonlinear equation models. Also, the convection heat transfer phenomena are analysed from the nonlinear equation models. In the results, the convection heat-transfer coefficients of Ondol heated space are suggested by the term of temperature difference between each wall surface and room air temperature and by the relationship between Nusselt number and Rayleigh number of dimensionless numbers.

  • PDF

Three-Dimensional Numerical Study on the Vortex Flow in a Horizontal Channels with High Viscous Fluid(2) (수평채널 내 고 점성유체의 볼텍스 유동에 관한 3차원 수치해석(2))

  • Piao, Ri-Long;Kim, Jeong-Soo;Bae, Dae-Seok
    • Journal of Power System Engineering
    • /
    • v.19 no.4
    • /
    • pp.36-42
    • /
    • 2015
  • TMixed convective flow in a bottom heated and top cooled rectangular channel can be significantly affected by the channel aspect ratio, Prandtl number, Reynolds number, Rayleigh number and angle of inclination. In such a mixed convection, the flow pattern plays an important role in various technological processes. In this study, a numerical investigation is carried out to explore mixed convection in a three-dimensional rectangular channel with bottom heated and top cooled uniformly. The three-dimensional governing equations are discretized using the finite volume method. In the range of low Reynolds number($0{\leq}Re{\leq}9.6{\times}10^{-2}$), the effects of the aspect ratio($2{\leq}AR{\leq}12$) and Gr/Re are presented and discussed. The longitudinal roll number in the channel is increased with increasing aspect ratio, and the roll number induced, regardless of the aspect ratio number, is even in the range of aspect ratios between 2 and 12, New vortex flow structure containing inclined longitudinal rolls is found, which is affected by aspect ratio and Reynolds number. The ratio Gr/Re is used to check the relative magnitudes of forced and natural convection in the mixed convective flow of high viscous fluid.

A numerical study of natural convection in a square enclosure with a circular cylinder for high Rayleigh number (높은 Rayleigh 수에서 원형 실린더가 존재하는 사각형 실린더 내부의 자연대류에 관한 수치적 연구)

  • Yu, Dong-Hun;Yoon, Hyun-Sik;Ha, Man-Yeong;Kim, Byeong-Su
    • Proceedings of the KSME Conference
    • /
    • 2008.11b
    • /
    • pp.2744-2749
    • /
    • 2008
  • Numerical calculations are carried out for the natural convection induced by temperature difference between a cold outer square cylinder and a hot inner circular cylinder for Rayleigh number of $Ra=10^7$. This study investigates the effect of the inner cylinder location on the heat transfer and fluid flow. The location of inner circular cylinder ($\delta$) is changed vertically along the center-line of square enclosure. The natural convection bifurcates from unsteady to steady state according to $\delta$. Two critical positions of ${\delta}_{C,L}$ and ${\delta}_{C,U}$ as a lower bound and an upper bound are ${\delta}_{C,L}=0.05$ and ${\delta}_{C,U}=0.18$, respectively. Within the defined bounds, the thermal and flow fields are steady state. When the inner cylinder locates at ${\delta}{\geq}{\delta}_{C,U}$, the space between the upper surface of inner cylinder and the top surface of the enclosure forms a relatively shallow layer where the natural convection characterized as the pure Rayleigh-Benard convection forms alternately the upwelling and downwelling plums, as a result that a series of cells known as Benard cells is derived.

  • PDF

Oscillatory Motion of Natural Convection in a Square Enclosure with a Horizontal Partition (정사각형 밀폐공간내에서 수평격판에 의한 자연대류의 진동현상)

  • Kim, J.S.;Chung, I.K.;Song, D.J.
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.5 no.4
    • /
    • pp.285-294
    • /
    • 1993
  • An oscillatory motion of natural convection in a two-dimensional square enclosure fitted with a horizontal partition is investigated numerically. The enclosure was composed of the lower hot and the upper cold horizontal walls and the adiabatic vertical walls, and a partition was positioned perpendicularly at the mid-height of one vertical insulated wall. The governing equations are solved by using the finite element method with Galerkin method. The computations were carried out with the variations of the partition length and Rayleigh number based on the temperature difference between two horizontal walls and the enclosure height with water(Pr=4.95). As the results, an oscillatory motion of natural convection has perfectly shown the periodicity with the decrease of Rayleigh number, and the stability was reduced to a chaotic state with the increase of Rayleigh number. The period of oscillation gets shorten with the decrease of the partition length and the increase of Rayleigh number. The frequency of oscillation obtained by the variations of stream function is more similar to the experimental results than that of the average Nusselt number. The stability of oscillation grows worse with the increase of Rayleigh number. The transition Rayleigh number for the chaos is gradually decreased with the increase of the partition length.

  • PDF