• Title/Summary/Keyword: Convection Heat Transfer Coefficient

Search Result 192, Processing Time 0.027 seconds

TRANSIENT THERMOELASTIC STRESS ANALYSIS OF A THIN CIRCULAR PLATE DUE TO UNIFORM INTERNAL HEAT GENERATION

  • GAIKWAD, KISHOR R.;NANER, YOGESH U.
    • Journal of the Korean Society for Industrial and Applied Mathematics
    • /
    • v.24 no.3
    • /
    • pp.293-303
    • /
    • 2020
  • The present work aims to analyzed the transient thermoelastic stress analysis of a thin circular plate with uniform internal heat generation. Initially, the plate is characterized by a parabolic temperature distribution along the z-direction given by T = T0(r, z) and perfectly insulated at the ends z = 0 and z = h. For times t > 0, the surface r = a is subjected to convection heat transfer with convection coefficient hc and fluid temperature T. The integral transform method used to obtain the analytical solution for temperature, displacement, and thermal stresses. The associated thermoelastic field is analyzed by making use of the temperature and thermoelastic displacement potential function. Numerical results are carried out with the help of computational software PTC Mathcad Prime-3.1 and shown in figures.

GREEN'S FUNCTION APPROACH TO THERMAL DEFLECTION OF A THIN HOLLOW CIRCULAR DISK UNDER AXISYMMETRIC HEAT SOURCE

  • GAIKWAD, KISHOR R.;NANER, YOGESH U.
    • Journal of the Korean Society for Industrial and Applied Mathematics
    • /
    • v.25 no.1
    • /
    • pp.1-15
    • /
    • 2021
  • A Green's function approach is adopted to solve the two-dimensional thermoelastic problem of a thin hollow circular disk. Initially, the disk is kept at temperature T0(r, z). For times t > 0, the inner and outer circular edges are thermally insulated and the upper and lower surfaces of the disk are subjected to convection heat transfer with convection coefficient hc and fluid temperature T∞, while the disk is also subjected to the axisymmetric heat source. As a special case, different metallic disks have been considered. The results for temperature and thermal deflection has been computed numerically and illustrated graphically.

A Numerical Study of Initial Unsteady Flow and Mixed Convection in an Enclosed Cavity Using the PISO Algorithm (PISO 알고리즘을 이용한 밀폐공간내에서의 유동 및 혼합대류에 관한 연구)

  • Choi, Y.G.;Chung, J.Y.
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.2 no.1
    • /
    • pp.63-73
    • /
    • 1990
  • A numerical analysis of initial unsteady state flow and heat transfer in an enclosed cavity has been performed by the Modified QUICK Scheme. The stable QUICK Scheme which modified the coefficient always to be positive is included in this numerical analysis. The implicit method is applied to solve the unsteady state flow; between iterations the PISO (Pressure - Implicit with Splitting of Operators) algorithm is employed to correct and update the velocity and pressure fields on a staggered grid. The accuracy of the Modified QUICK Scheme is proved by applying fewer grid systems than those which Ghia et al. and Davis applied. The initial unsteady mixed convection in an enclosed cavity is analyzed using the above numerical procedure. This study focuses on the development of the large main vortex and secondary vortex in forced convection, the effects of the Rayleigh Number in natural convection and the relative direction of the forced and natural convection.

  • PDF

Numerical analysis of heat transfer for architectural structure composed of multiple materials in ISO10211 (복합재질로 구성된 건축 구조체의 열전달 수치해석을 위한 ISI10211모델계산)

  • Lee, Juhee;Park, JiHo;Lee, YongJun
    • KIEAE Journal
    • /
    • v.16 no.6
    • /
    • pp.159-166
    • /
    • 2016
  • Purpose: The architectural structures in the engineering field include more than one material, and the heat transfer through these multiple materials becomes complicated. More or less, the analytic solutions obtained by the hand calculation can provide the limited information of heat transfer phenomena. However, the engineers have generally been forced to obtain reliable results than those of the hand calculation. The numerical calculation such as a finite volume methods with the unstructured grid system is only the suitable means of the analysis for the complex and arbitrary domains that consists of multiple materials. In this study, a new numerical code is developed to provide temperature distributions in the multiple material domains, and the results of this code are compared with the validation cases in ISO10211. Method: Finite volume methods with an unstructured grid is employed. In terms of numerical methods, the heat transfer conduction coefficient is not defined on the surface of the cell between different material cells. The heat transfer coefficient is properly defined to accurately mimic the heat transfer through the surface. The boundary conditions of heat flux considering radiation or heat convection are also developed. Result: The comparison between numerical results and ISO 10211 cases. We are confirmed that the numerical method provides the proper temperature distributions, and the heat transfer equation and its boundary conditions are developed properly.

Comparison of Heat Transfer Between 1-D and 2-D Analyses for a Rectangular Annular Fin (사각 환형 핀에 대한 1차원과 2차원 해석의 열전달 비교)

  • Kang, Hyung-Suk
    • Proceedings of the SAREK Conference
    • /
    • 2009.06a
    • /
    • pp.1177-1181
    • /
    • 2009
  • Heat loss from a convective rectangular profile annular fin with variable inside fluid heat transfer coefficient and fin height is calculated by using both the one dimensional analytic method and two dimensional variables separation method. Heat loss from the two dimensional method and the relative error of heat loss between the one dimensional method and two dimensional method are presented as a function of the fin length, ambient convection characteristic number and fin height. One of the results shows that the relative error of heat loss between one dimensional method and two dimensional method is within 0.7% in the range of given parameters in this study.

  • PDF

Measurement of Condensation and Boiling Heat Transfer Coefficients of Non-flammable Mixed Refrigerant for Design of Cryogenic Cooling System for Semiconductor Etching Process (반도체 식각 공정용 초저온 냉각 시스템 설계를 위한 비가연성 혼합냉매 응축 및 비등 열전달 계수 측정)

  • Cheonkyu Lee;Jung-Gil Lee
    • Journal of the Semiconductor & Display Technology
    • /
    • v.22 no.3
    • /
    • pp.119-124
    • /
    • 2023
  • In this study, experimental approach of the measurement of condensation and evaporation heat transfer coefficients is discussed for mixed refrigerants using in the ultra low-temperature cooling system for semiconductor etching process. An experimental apparatus was described performing the condensation and evaporation heat transfer measurements for mixed refrigerants. The mixed refrigerant used in this study was composed of the optimal mixture determined in previous research, with a composition of Ar:R14:R23:R218 = 0.15:0.4:0.15:0.3. The experiments were conducted over a temperature range from -82℃ to 15℃ and at pressures ranging from 18.5 bar to 5 bar. The convection heat transfer coefficients of the mixed refrigerant were measured at flow rates corresponding to actual operating conditions. The condensation heat transfer coefficient ranged from approximately 0.7 to 0.9 kW/m2K, while the evaporation heat transfer coefficient ranged from 1.0 to 1.7 kW/m2K. The detailed discussion of the experimental methods, procedures, and results were described in this paper.

  • PDF

Hydration Heat Analysis of Mass Concrete considering Heat Transfer Coefficient and Hydration Heat Difference (수화발열량차 및 열전달계수 변화를 고려한 매스콘크리트의 수화열 해석)

  • Han, Seung-Baek;Lee, Seong-Su;Shin, Hyo-Bum;Kim, Ho-Soo
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2008.11a
    • /
    • pp.249-252
    • /
    • 2008
  • In recent large-scale structures, as mass concrete type structure is frequently applied to the building, temperature crack due to hydration heat needs to be considered. Since a volume change is internally or externally restricted in a mold after placing concrete, temperature crack of mass concrete takes place. By this reason, the reduction method to control this crack is required. In this study, low heat mixture and hydration heat difference is used to execute the analysis of hydration heat, considering the changes of heat transfer coefficient according to curing conditions and block placement of mass concrete. For the analytical modelling, original portland cement and concrete of low heat mixture are placed in the upper and lower payer, respectively. A convection boundary condition is fixed because mass concrete of block placement is characterized by the difference of mold form and curing condition. Through the analysis results considering the changes of low heat mixture, block placement, and heat transfer coefficient, we check out the temperature and stress distribution and analyze the temperature crack reduction effect.

  • PDF

Evaluation of U-value for Radiant Barrier Systems in Relation to Surface Emissivity (표면방사율에 따른 복사단열시스템의 열관류성능 평가 연구)

  • Kim, K.S.;Lee, D.G.;Yoon, J.H.;Song, I.C.
    • Solar Energy
    • /
    • v.20 no.3
    • /
    • pp.39-50
    • /
    • 2000
  • Radiant barrier systems(RES) constructed with low emissivity materials bounded by an open air space can be used to reduce the net radiation transfer between two surfaces. To analyze the heat transfer characteristics of the radiant barrier systems which consist of a single-glass and radiation barriers, a simple theoretical model based on energy balances was suggested. And the model was validated by means of the experimental results. Using a guarded hot box, the temperatures of layers in selected RES and energy use for each cases were measured. The results show that the model well explained the heat transfer characteristics of those RES. Also, the heat transfer coefficient correlations considering natural and forced convection heat transfer ware suggested. It is found that the heat transfer efficiency of a RBS with aluminium surface improved up to 66.6% over that of a single glazing system.

  • PDF

NUMERICAL STUDY ON THE EFFECT OF THE SHAPE OF THE HEAT TRANSFER PLATE ON THE THERMAL PERFORMANCE OF THE RADIATOR (변압기용 방열기의 방열판 형상이 방열특성에 미치는 영향에 관한 수치적 연구)

  • Kim, Y.J.;Doo, J.H.;Ha, M.Y.;Son, S.W.;Kim, J.K.;Lee, S.H.
    • Journal of computational fluids engineering
    • /
    • v.20 no.1
    • /
    • pp.65-76
    • /
    • 2015
  • In this study, the natural convection phenomenon of the air side and the forced convection phenomenon of the oil side were simulated in the radiator through a 3-D numerical analysis, and the total heat released by the oil side into the radiator heating plate and then to the air side was evaluated. Also, a quantitative analysis was carried out on the effect of each thermal resistance on the overall heat transfer coefficient through a 1-D thermal circuit analysis on the heat transfer mechanisms of the radiators considered in this study. In addition, for the diverse shapes of the heating plates considered in this study, the pressure drops of the oil side were quantitatively compared and evaluated. The temperatures at the air side and the oil side outlets of the radiators with 8 different fin shapes considered in this study had almost similar values showing a difference of +/-3% and, accordingly, the total heat transfer also showed similar heat dissipation performance in all the models. As a result of the 1-D thermal circuit analysis, in all the models considered in this study, while the thermal resistance of the air side accounted for 92% to 96% of the total, that of the oil side was 5 to 7%, and that of the heating plate showed a very small value of 0.02%.

An Experimental Study on the Performance of Brazed Plater Heat Exchangers (용접형 판형열교환기 성능측정에 관한 실험적 연구)

  • Park, Hyun-Min;Park, Chang Yong
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.22 no.3_1spc
    • /
    • pp.551-557
    • /
    • 2013
  • The heat transfer performance and pressure drop characteristics of brazed-plate heat exchangers with 20 and 30 plates were experimentally measured and analyzed in this study. The mass flow rates of the heat exchangers with 20 and 30 plates were fixed at 0.6 and 0.9 kg/s for the low temperature side, respectively. The mass flow rate for the high temperature side was controlled from 0.2 kg/s to 1.2 kg/s. The inlet temperatures for the high and low temperature sides were $10^{\circ}C$ and $7^{\circ}C$, respectively. The heat transfer characteristics were not influenced by the number of plates. The pressure drop at the heat exchanger with 30 plates was slightly higher than that with 20 plates. The values calculated from the correlations based on gasket plate heat exchangers were compared with the experimental results. It was found that the predicted Nusselt numbers for the gasket plate heat exchangers were about 5% to 20% lower than the measured Nusselt numbers for the brazed plate heat exchangers. However, a pressure drop comparison showed that the calculated pressure drops at the gasket plate heat exchangers were less than half of the measured pressure drops at the brazed plate heat exchangers.