• Title/Summary/Keyword: Controlled release formulation

Search Result 52, Processing Time 0.027 seconds

A Formulation Study for the Controled Release Rate of Diltiazem. HCl using the Multiple Drug Release System (다중약물방출시스템을 이용한 염산딜티아젬의 방출속도 조절에 관한 연구)

  • Kim, Hak-Hyung;Oh, Jin-Hwan;Han, Kun
    • Journal of Pharmaceutical Investigation
    • /
    • v.35 no.3
    • /
    • pp.157-163
    • /
    • 2005
  • The pellets with multiple drug release system (MDRS) of Diltiazem. HCl which consist of immediate drug release layer, drug reservoir layer and controlled release rate membrane, were prepared by using CF-Coater. As main factors for more effective MDRS of Diltiazem. HCl, ethylcellulose was used for the controlling drug release rate, and diethylphthalate was used for plasticizer, respectively. In vitro evaluation study was performed by comparative dissolution test between our test MDRS and reference Diltiazem. HCl preparation. The physical tests were performed using FT-IR and SEM. In vivo evaluation was also performed by observing the behavior of a plasma drug concentration after oral administration. The bioavailability was determined by analyzing the blood sample after oral administration to healthy, male volunteers once a day. As a result, there were no significant differences in bioequivalence parameters $(AUC_{\infty},\;C_{max},\;t_{1/2})$ between two systems. It might be concluded that our MDRS of Diltiazem. HCl could be an alternative delivery system to reference drug preparation.

Controlled Release and Bioavailability of Piracetam (피라세탐의 방출조절 및 생체이용률)

  • Kang, Chin-Yang;Lee, Kyung-Tae;Seo, Seong-Hoon
    • Journal of Pharmaceutical Investigation
    • /
    • v.28 no.2
    • /
    • pp.109-113
    • /
    • 1998
  • This study is purposed to develop the sustained release and bioavailability of piracetam (PA). The use of alginate beads as a means to achieve sustained release of piracetam was evaluated in comparison with that of piracetam alone. In the PA-sodium alginate(SA) beads was confirmed by differential scanning calorimetry thermogram(DSC), indicating a relative shift of an endometric peak of PA to higher temperature. The changes in dissolution rates from PA-SA beads and PASA beads coated by chitosan(CHO) were significantly slower than that of intact PA. The release rate of PA-SA in the gastric fluid was markedly decreased compared with that in the intestinal fluid, suggesting that PA is mostly released in the intestinal fluid. However, the PA/SA ratio scarcely affected the release profile. The blood concentration- time curves of PA, PA-SA and PA-SA-CHO were obtained by oral administration to rats. $T_{max}$ of PA, PA-SA and PA-SA-CHO were 1, 10 and 6 hours, respectively. It was confirmed that the release of PA was prolonged by the formulation of PA-SA beads and PA-SA-CHO beads.

  • PDF

Preparation and Dissolution Properties of Oral Controlled Release Formulation Containing Carvedilol (카르베딜롤을 함유하는 경구제어 방출형 제제의 제조 및 용출특성)

  • Choi, Won-Sik;Kim, Yong-Nam;Nam, Seok-Woo;Yang, Jin-Ah
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.11 no.7
    • /
    • pp.2451-2458
    • /
    • 2010
  • We prepared sustained release matrix system which contains carvedilol with Compritol 888 ATO used as lipophilic sustained release excipient and hydroxypropyl methyl cellulose (HPMC) or polyethylene oxide (PEO) used as hydrophilic sustained release polymer. Wet granulation compressed method was used for preparing carvedilol sustained release matrix tablets. When carvedilol sustained release matrix tablets were prepared, we evaluated the drug release kinetics which is affected by Compritol 888 ATO ratio, a kind of hydrophilic polymer (HPMC, PEO) and hot melt coating coagglutination (HMCC) process was done. The drug release kinetics was measured for 24 hours in pH 1.2 simulated gastric fluid and pH 6.8 simulated intestinal fluid, using a dissolution tester at $37.5^{\circ}C$ in 50 rpm. Dissolution rate of controlled release matrix tablets of carvedilol was evaluated by paddle method. We confirmed that HMCC process was very effective to controlled release of drugs. The rate of Compritol 888 ATO, as a lipidic material, can control the drug release pattern about the elution rate of 95% and 24 hours delay than that of the normal tablet.

Controlled Release of Oxyfluorfen from the Variously Complexed Formulations III. Phytotoxicity and Efficacy of Selected Formulations as Affected by Application Rates (수종(數種)의 結合齊l型(結合齊l型)으로부터 Oxyfluorfen의 방출제어연구(放出制御硏究) III. 사용량(使用量)에 따른 선발제형(選拔劑型) Oxyfluorfen의 약해(藥害)·약효평가(藥效評價))

  • Guh, J.O.;Lim, W.H.;Chon, S.U.;Kwon, S.L.
    • Korean Journal of Weed Science
    • /
    • v.11 no.1
    • /
    • pp.11-18
    • /
    • 1991
  • Seven formulations of oxyfluorfen selected from the previous studies(4. 5) were tesed to evaluate crop injury and herbicidal efficacy on two rice cultivars and several annual and perennial weeds in a greenhouse. Each formulation at two different rates was applied to rice transplanted with 8-, 22- and 32-day old seedlings and to direct-seeded rice. Among the formulations, Elvan, Bentonite B. Chitosan and Coal Slag gave lower injury than a control formulation, Sand-coated oxyluorfen, and they did not have a problem with excessive release if active ingredient at once. Especially, the formulations of Elvan, Chitosan and Bentonite B controlled annual weeds (Echinochloa crus-galli, Monochoria vaginalis, Cyperus difformis., and Scirpus juncoides) and perennial weeds (Sagittaria pygmaea, and Cyperus serotinus). The surface structure of the formulations indicate the different possibilities of releasing of oxyfluorfen by different cracking and hole sizes, namely retention capacity.

  • PDF

Physico-chemical properties and biological activity of controlled-release granular formulations for the herbicide dicamba (방출조절형 dicamba 입제의 물리화학성 및 생물효과)

  • Oh, Kyeong-Seok;Oh, Byung-Youl;Park, Seung-Soon;Lee, Jae-Koo
    • The Korean Journal of Pesticide Science
    • /
    • v.3 no.1
    • /
    • pp.37-45
    • /
    • 1999
  • Dicamba (3,6-dichloro-o-anisic acid) granular formulations for controlled release (DGFCRs) were prepared with biodegradable polymers, corn starch and pregelatinized starch, to minimize harmful side effects, extend weed control performance, and control the releasing rate of the active ingredient. Physico-chemical properties and biological activity of DGFCRs were studied. Six different granules were formulated by applying two processes, granulation and extrusion. Formulation efficiencies of active ingredient (A.I.) in the granules prepared by granulating and extruding were $90.0{\sim}96.3%$. Incorporation ratios of A.I. in the granules prepared by granulating and extruding showed $89.5{\sim}94.5%$ and $46.7{\sim}82.0%$, respectively. The highest swellability was DG-2 formulation prepared with corn starch. Whereas, the lowest floatability in water was DG-2 formulation, while the highest one was DG-1 formulation prepared with pregelatinized starch, Miragel 463. The degradation rates of dicamba in the granules under the elevated temperature of $50^{\circ}C$ were less than 5% for DG-1 and DG-2 formulations even after 90 days, meanwhile, those of DE-1 formulations prepared with pregelatinized starch, Mirasperse, were more than 5%. The release rates of A.I. from the granules into water under a static condition were about 100% after 2 weeks. Weeding effects of the granules on broad leaf weeds tested in greenhouse were more than 90% after 30 days.

  • PDF

Solubilization of poorly water-soluble drugs using solid dispersions

  • Kim, Tae-Wan;Choi, Choon-Young;Cao, Qing-Ri;Lee, Beom-Jin
    • Proceedings of the PSK Conference
    • /
    • 2002.10a
    • /
    • pp.412.2-413
    • /
    • 2002
  • Purpose. To prepare polymer based physical mixtures or solid dispersions containing solubilizing compositions using a spray-dryer. Methods. Lovastatin.simvastatin.aceclofenac and cisapride were selected as poorly water-soluble drugs. Dextrin. poly(vinylalcohol). poly(vinylpyrrolidone)and polyethylene glycol were chosen as solubilizing carriers for solid dispersions. The solid dispersions containing solubilizing compositions without drug were prepared without using organic solvents or tedious changes of formulation compositions. (omitted)

  • PDF

Poly(Dimethylaminoethyl Methacrylate)-Based pH-Responsive Hydrogels Regulate Doxorubicin Release at Acidic Condition

  • Lee, Seung-Hun;You, Jin-Oh
    • Journal of the Korean Applied Science and Technology
    • /
    • v.32 no.2
    • /
    • pp.202-214
    • /
    • 2015
  • Stimuli-responsive biomaterials that alter their function through sensing local molecular cues may enable technological advances in the fields of drug delivery, gene delivery, actuators, biosensors, and tissue engineering. In this research, pH-responsive hydrogel which is comprised of dimethylaminoethyl methacylate (DMAEMA) and 2-hydroxyethyl methacrylate (HEMA) was synthesized for the effective delivery of doxorubicin (Dox) to breast cancer cells. Cancer and tumor tissues show a lower extracellular pH than normal tissues. DMAEMA/HEMA hydrogels showed significant sensitivity by small pH changes and each formulation of hydrogels was examined by scanning electron microscopy, mechanical test, equilibrium mass swelling, controlled Dox release, and cytotoxicity. High swelling ratios and Dox release were obtained at low pH buffer condition, low cross-linker concentration, and high content of DMAEMA. Dox release was accelerated to 67.3% at pH 5.5 for 6-h incubation at $37^{\circ}C$, while it was limited to 13.8% at pH7.4 at the same time and temperature. Cell toxicity results to breast cancer cells indicate that pH-responsive DMAEMA/HEMA hydrogels may be used as an efficient matrix for anti-cancer drug delivery with various transporting manners. Also, pH-responsive DMAEMA/HEMA hydrogels may be useful in therapeutic treatment which is required a triggered release at low pH range such as gene delivery, ischemia, and diabetic ketoacidosis.

Liposome/Tat Complex for Facilitating Genistein Uptake into B16 Melanoma Cells

  • Park, Young-Mi;Kang, Myung-Joo;Moon, Ki-Young;Park, Sang-Han;Kang, Mean-Hyung;Choi, Young-Wook
    • Journal of Pharmaceutical Investigation
    • /
    • v.41 no.4
    • /
    • pp.205-210
    • /
    • 2011
  • Genistein (GT), a major isoflavone found in soybeans, has a potent antioxidant effect that protects the skin from UV-induced damages and malignant melanoma. In order to enhance the cellular uptake of GT, liposome/Tat complexes were prepared by an electrostatic interaction of anionic liposome (DMPC/DCP, 9:1 in molar ratio) with Tat peptide (0.02 to 0.08 mole), one of the well-known cell penetrating peptide (CPP). As the amount of Tat increased, the size increased but the zeta potential decreased. In vitro release study with dialysis membrane elicited GT release from liposomal preparations in a controlled manner. The addition of Tat increased GT release, especially for the initial period. In the cellular uptake study by incubating B16 melanoma cells with various liposomal preparations containing GT, B16 melanoma cells demonstrated a time-dependent increase of drug accumulation. Compared to the aqueous GT suspension, intracellular uptake was substantially enhanced by anionic liposomal formulation and further increased by the complex formulation. Therefore, liposome/ Tat complex might be a good candidate for facilitating intracellular drug delivery.

Effect of the Viscosity of (Hydroxypropyl)methyl Cellulose on Dissolution Rate of Alfuzosin-HCl Granule Tablet (HPMC의 점도에 따른 염산 알푸조신 과립정제의 용출률 조절)

  • Kim, Won;Song, Byung-Joo;Kim, Dae-Sung;Kim, Su-Jin;Lee, Seon-Kyoung;Kim, Hye-Lin;Lee, Dong-Won;Khang, Gil-Son
    • Polymer(Korea)
    • /
    • v.34 no.3
    • /
    • pp.269-273
    • /
    • 2010
  • The primary objective of this work is to find the optimal condition for the granule tablet formulation of alfuzosin-HCl that aims to achieve a sustained drug release. (Hydroxypropyl)methyl cellulose (HPMC) is one of the most widely used polymer as a drug formulation and therefore has been utilized in this study as an excipient. Alfuzosin-HCl granule tablet was developed using the various viscosities of HPMC and the effects of viscosity on drug release was investigated. Fourier transform-infrared (FTIR) and X-ray diffraction (XRD) were employed to investigate the chemical structure and crystallization of alfuzosin-HCl in the formulation. We prepared the granule tablet by a direct compression method and studied the release profile in the stimulated intestinal fluid (pH 6.8). As the viscosity of HPMC increased the release of alfuzosin-HCl decreased, demonstrating that controlled release of alfuzosin-HCl can be achieved by varying the viscosity of HPMC.

Preparation of Dexamethasone-21-palmitate Incorporated Lipid Nanosphere: Physical Properties by Varying Components and Ratio of Lipid (팔미틴산덱사메타손이 봉입된 지질나노입자의 제조: 지질종류와 함량에 따른 물리적 특성)

  • Jung, Suk-Hyun;Lee, Jung-Eun;Seong, Ha-Soo;Shin, Byung-Cheol
    • Journal of Pharmaceutical Investigation
    • /
    • v.36 no.6
    • /
    • pp.355-361
    • /
    • 2006
  • Intraarticular corticosteroid injections for therapy of rheumatic arthritis are administered with the aim of optimal local anti-inflammatory effect at the injection site. Since the side effects of corticosteroidal drug, dexamethasone(DEX), administered at hish dose limited the therapeutic efficacy, there was a need to design a new drug delivery system for controlled release of dexamethasone. As a prodrug for continuous therapeutic efficacy, dexamethasone-21-palmitate(DEX-PAL) was prepared via esterification of palmitoyl chloride and dexamethasone. DEX-PAL was identified by NMR and MASS analysis. DEX-PAL or DEX was entrapped in lipid nanosphere which could be prepared by using a self emulsification-solvent evaporation method. Physicochemical characteristics such as mean particle diameter, zeta potential and drug loading efficiency of the lipid nanospheres were investigated with variation of either the kind of lipid or the lipid composition. The lipid nanospheres had a mean diameter $83{\sim}95$ nm and DEX-PAL loading efficiency of up to 95%. The drug loading efficiency increased with the increase of aliphatic chain length attached to the phospholipid. The incorporation of cationic lipid was very efficient for both reducing particle size of lipid nanospheres and enhancing drug loading efficiency. The lipid nanospheres containing DEX-PAL may be a promising novel drug carrier for the controlled release of the poorly water-soluble drugs.