• Title/Summary/Keyword: Controlled models

Search Result 579, Processing Time 0.028 seconds

Design Optimization of Mixed-flow Pump in a Fixed Meridional Shape

  • Kim, Sung;Choi, Young-Seok;Lee, Kyoung-Yong;Kim, Jun-Ho
    • International Journal of Fluid Machinery and Systems
    • /
    • v.4 no.1
    • /
    • pp.14-24
    • /
    • 2011
  • In this paper, design optimization for mixed-flow pump impellers and diffusers has been studied using a commercial computational fluid dynamics (CFD) code and DOE (design of experiments). We also discussed how to improve the performance of the mixed-flow pump by designing the impeller and diffuser. Geometric design variables were defined by the vane plane development, which indicates the blade-angle distributions and length of the impeller and diffusers. The vane plane development was controlled using the blade-angle in a fixed meridional shape. First, the design optimization of the defined impeller geometric variables was achieved, and then the flow characteristics were analyzed in the point of incidence angle at the diffuser leading edge for the optimized impeller. Next, design optimizations of the defined diffuser shape variables were performed. The importance of the geometric design variables was analyzed using $2^k$ factorial designs, and the design optimization of the geometric variables was determined using the response surface method (RSM). The objective functions were defined as the total head and the total efficiency at the design flow rate. Based on the comparison of CFD results between the optimized pump and base design models, the reason for the performance improvement was discussed.

The Effect of Time Delay on Adaptive QAM Schemes in Mobile Multimedia Communications (이동 멀티미디어 통신에서 적응 QAM 변조의 시간지연에 대한 영향)

  • Chung, Yeon-Ho
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.5 no.2
    • /
    • pp.337-342
    • /
    • 2001
  • This paper provides a comprehensive study of the effect of time delay on adaptive transmission methods. By adaptive we mean that the transmission of data is made adaptive according to channel conditions. That is, the modulation level at the transmitter is carefully controlled for maximizing bandwidth efficiency, on the basis of the observation of instantaneous channel characteristics. By making use of the simulator developed for the present work, a large number of channel propagation environments including the models proposed in 3GPP were submitted to the simulator and the performance with respect to both time delay and SNR is observed. The results show that the performance is very sensitive to channel delay and in some cases the performance shows irreducible BER (IBER). A large amount of delay together with a high fading rate greatly affects the performance of adaptive transmission systems.

  • PDF

A PMSM Driven Electric Scooter System with a V-Belt Continuously Variable Transmission Using a Novel Hybrid Modified Recurrent Legendre Neural Network Control

  • Lin, Chih-Hong
    • Journal of Power Electronics
    • /
    • v.14 no.5
    • /
    • pp.1008-1027
    • /
    • 2014
  • An electric scooter with a V-belt continuously variable transmission (CVT) driven by a permanent magnet synchronous motor (PMSM) has a lot of nonlinear and time-varying characteristics, and accurate dynamic models are difficult to establish for linear controller designs. A PMSM servo-drive electric scooter controlled by a novel hybrid modified recurrent Legendre neural network (NN) control system is proposed to solve difficulties of linear controllers under the occurrence of nonlinear load disturbances and parameters variations. Firstly, the system structure of a V-belt CVT driven electric scooter using a PMSM servo drive is established. Secondly, the novel hybrid modified recurrent Legendre NN control system, which consists of an inspector control, a modified recurrent Legendre NN control with an adaptation law, and a recouped control with an estimation law, is proposed to improve its performance. Moreover, the on-line parameter tuning method of the modified recurrent Legendre NN is derived according to the Lyapunov stability theorem and the gradient descent method. Furthermore, two optimal learning rates for the modified recurrent Legendre NN are derived to speed up the parameter convergence. Finally, comparative studies are carried out to show the effectiveness of the proposed control scheme through experimental results.

Experimental characterization of timber framed masonry walls cyclic behaviour

  • Goncalves, Ana Maria;Ferreira, Joao Gomes;Guerreiro, Luis;Branco, Fernando
    • Structural Engineering and Mechanics
    • /
    • v.53 no.2
    • /
    • pp.189-204
    • /
    • 2015
  • After the large destruction of Lisbon due to the 1755 earthquake, the city had to be almost completely rebuilt. In this context, an innovative structural solution was implemented in new buildings, comprising internal timber framed walls which, together with the floors timber elements, constituted a 3-D framing system, known as "cage", providing resistance and deformation capacity for seismic loading. The internal timber framed masonry walls, in elevated floors, are constituted by a timber frame with vertical and horizontal elements, braced with diagonal elements, known as Saint Andrew's crosses, with masonry infill. This paper describes an experimental campaign to assess the in-plane cyclic behaviour of those so called "frontal" walls. A total series of 4 tests were conducted in 4 real size walls. Two models consist of the simple timber frames without masonry infill, and the other two specimens have identical timber frames but present masonry infill. Experimental characterization of the in-plane behaviour was carried out by static cyclic shear testing with controlled displacements. The loading protocol used was the CUREE for ordinary ground motions. The hysteretic behaviour main parameters of such walls subjected to cyclic loading were computed namely the initial stiffness, ductility and energy dissipation capacity.

Strain and crack development in continuous reinforced concrete slabs subjected to catenary action

  • Gouverneur, Dirk;Caspeele, Robby;Taerwe, Luc
    • Structural Engineering and Mechanics
    • /
    • v.53 no.1
    • /
    • pp.173-188
    • /
    • 2015
  • Several structural calamities in the second half of the 20th century have shown that adequate collapse-resistance cannot be achieved by designing the individual elements of a structure without taking their interconnectivity into consideration. It has long been acknowledged that membrane behaviour of reinforced concrete structures can significantly increase the robustness of a structure and delay a complete collapse. An experimental large-scale test was conducted on a horizontally restrained, continuous reinforced concrete slab exposed to an artificial failure of the central support and subsequent loading until collapse of the specimen. Within this investigation the development of catenary action associated with the formation of large displacements was observed to increase the ultimate load capacity of the specimen significantly. The development of displacements, strains and horizontal forces within this investigation confirmed a load transfer process from an elastic bending mechanism to a tension controlled catenary mechanism. In this contribution a special focus is directed towards strain and crack development at critical sections. The results of this contribution are of particular importance when validating numerical models related to the development of catenary action in concrete slabs.

Two Dimensional Numerical Model for Thermal Management of Proton Exchange Membrane Fuel Cell with Large Active Area (대면적 셀 고분자 막전해질 연료전지의 열관리를 위한 2 차원 수치 해석 모델)

  • Yu, Sang-Seok;Lee, Young-Duk;Ahn, Kook-Young
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.32 no.5
    • /
    • pp.359-366
    • /
    • 2008
  • A two-dimensional thermal model of proton exchange membrane fuel cell with large active area is developed to investigate the performance of fuel cell with large active area over various thermal management conditions. The core sub-models of the two-dimensional thermal model are one-dimensional agglomerate structure electrochemical reaction model, one-dimensional water transport model, and a two-dimensional heat transfer model. Prior to carrying out the simulation, this study is contributed to set up the operating temperature of the fuel cell with large active area which is a maximum temperature inside the fuel cell considering durability of membrane electrolyte. The simulation results show that the operating temperature of the fuel cell and temperature distribution inside the fuel cell can affect significantly the total net power at extreme conditions. Results also show that the parasitic losses of balance of plant component should be precisely controlled to produce the maximum system power with minimum parasitic loss of thermal management system.

Steel fibre and transverse reinforcement effects on the behaviour of high strength concrete beams

  • Cucchiara, Calogero;Fossetti, Marinella;Papia, Maurizio
    • Structural Engineering and Mechanics
    • /
    • v.42 no.4
    • /
    • pp.551-570
    • /
    • 2012
  • An experimental program was carried out to investigate the influence of fibre reinforcement on the mechanical behaviour of high strength reinforced concrete beams. Eighteen beams, loaded in four-point bending tests, were examined by applying monotonically increasing controlled displacements and recording the response in terms of load-deflection curves up to failure. The major test variables were the volume fraction of steel fibres and the transverse steel amount for two different values of shear span. The contribution of the stirrups to the shear strength was derived from the deformations of their vertical legs, measured by means of strain gauges. The structural response of the tested beams was analyzed to evaluate strength, stiffness, energy absorption capacity and failure mode. The experimental results and observed behaviour are in good agreement with those obtained by other authors, confirming that an adequate amount of steel fibres in the concrete can be an alternative solution for minimizing the density of transverse reinforcement. However, the paper shows that the use of different theoretical or semi-empirical models, available in literature, leads to different predictions of the ultimate load in the case of dominant shear failure mode.

A New Modeling Methodology of TFBAR (박막공진기에 대한 새로운 모델링 기법)

  • 김종수;구명권;육종관
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.15 no.1
    • /
    • pp.103-109
    • /
    • 2004
  • In this paper, a new modeling methodology of thin film bulk acoustic resonator(TFBAR) is presented and the formulations of each lumped element in the model are also introduced. The new model is based upon the Mason model that is a reasonable model to explain the physical characteristics of unit TFBAR. After simplifying the modified Mason model with an additional dielectric loss term, the new model similar to Modified Butterworth-Van Dyke(MBVD) model is complete. The proposed model has three optimization variables which is half of the MBVD model. As a result, the curve fittings for the measured data are much faster and more accurate than any other conventional models. Moreover, it is very useful to design the bandpass filters or voltage controlled oscillators due to the design parameters, such as resonant and anti-resonant frequency, which can reflect the intentions of designer in the model.

Optimal Scheduling of Electric Vehicles Charging in low-Voltage Distribution Systems

  • Xu, Shaolun;Zhang, Liang;Yan, Zheng;Feng, Donghan;Wang, Gang;Zhao, Xiaobo
    • Journal of Electrical Engineering and Technology
    • /
    • v.11 no.4
    • /
    • pp.810-819
    • /
    • 2016
  • Uncoordinated charging of large-scale electric vehicles (EVs) will have a negative impact on the secure and economic operation of the power system, especially at the distribution level. Given that the charging load of EVs can be controlled to some extent, research on the optimal charging control of EVs has been extensively carried out. In this paper, two possible smart charging scenarios in China are studied: centralized optimal charging operated by an aggregator and decentralized optimal charging managed by individual users. Under the assumption that the aggregators and individual users only concern the economic benefits, new load peaks will arise under time of use (TOU) pricing which is extensively employed in China. To solve this problem, a simple incentive mechanism is proposed for centralized optimal charging while a rolling-update pricing scheme is devised for decentralized optimal charging. The original optimal charging models are modified to account for the developed schemes. Simulated tests corroborate the efficacy of optimal scheduling for charging EVs in various scenarios.

The Study on Design and Dynamic Operation Characteristics of Linear Pulse I for Embroidery Machine (자수기에 맞는 LPM의 설계와 구동 특성에 관한 연구)

  • Park, Chang-Soon;Kwon, Tae-Gun
    • Proceedings of the KIEE Conference
    • /
    • 2001.10a
    • /
    • pp.91-93
    • /
    • 2001
  • Linear pulse Motors(LPM) are widely used in fields where smooth linear motion is required, and their position accuracy is higher than other motors. Hybrid linear pulse motors(HLPM) are regarded as an excellent solution to positioning problems that require high accuracy, rapid acceleration and high-speed. The LPM has low mechanical complexity, high reliability, precise open-loop operation and low inertia etc. In many application areas such as factory automation speed positioning, computer peripherals and numerically controlled machine tools, LPM can be used. This motor drive system is especially suitable for machine tools the high position accuracy and repeatability. This paper describes about that need of the embroider machine, we want to design position-scanning device for the embroidery machine. At first, to be analysed characteristics of the machine and next designed the LPM, we used the field analysis program. The finite element method(FEM) program tool is employed for calculation the force. The reluctance models will be used the magnetic permeance of air gap by static-conditions. The forces between forcer and platen have been calculated using the virtual work method. And we used the simulink to know the dynamic characteristics of LPM.

  • PDF