• Title/Summary/Keyword: Controlled mechanical system

Search Result 824, Processing Time 0.029 seconds

Development of Tethered-Balloon Package System for Vertical Distribution Measurement of Atmospheric Aerosols (Tethered-Balloon Package System 개발 및 대기 에어로졸의 연직 분포 측정)

  • Eun, Hee Ram;Lee, Hong Ku;Lee, Yang Woo;Ahn, Kang-Ho
    • Particle and aerosol research
    • /
    • v.9 no.4
    • /
    • pp.253-260
    • /
    • 2013
  • For a vertical atmospheric aerosol distribution measurement, a very compact and light particle sampling package is developed. This package includes a compact optical particle counter (Hy-OPC), a light and small condensation particle counter (Hy-CPC), sensors (GPS, wind velocity, temperature, humidity), and a communication and system control board. This package is attached to He balloon and the altitude is controlled by a winch. Using this system the vertical particle size distribution was measured. The test results showed that the ground base atmospheric particle measurement result may be a lot different from that high above the ground.

A Spillover Suppression Method in a Flexible Structure Using Eigenstructure Assignment (고유구조지정법을 이용한 유연구조물의 스필오버 억제방법)

  • Park, Jae-Weon;Park, Un-Sik
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.6 no.11
    • /
    • pp.955-962
    • /
    • 2000
  • Although large space structures(LSS) such as a space station, a solar power station satellite, etc., are theoretically distributed parameter and infinite-dimensional systems, they have to be modeled into a lumped parameter and large finite-dimensional system for control system design. Besides, there remains the fundamental problem that the modeled large finite-dimensional system must be controled with a much smaller dimensional controller due to the limitation of computing resources. This causes the spillover phenomenon which degrades control performances and reduces the stability margin. Furthermore, it may destabilize the entire feedback control system. In this paper, we propose a novel spillover suppression method in the active vibration control of large flexible structures by using eigenstructure assignment. Its validity and effectiveness are investigated and verified by the numerical experiments using a simply supported flexible beam, which is modeled to have four controlled modes and eight uncontrolled modes.

  • PDF

Adaptive Tracking Control of Two-Wheeled Welding Mobile Robot - Dynamic Model Approach -

  • Bui, Trong Hieu;Nguyen, Tan Tien;Suh, Jin-Ho;Kim, Sang-Bong
    • Proceedings of the KIEE Conference
    • /
    • 2002.07d
    • /
    • pp.2424-2426
    • /
    • 2002
  • This paper proposes an adaptive control method of partially known system and shows its application result to control for two-wheeled WMR. The controlled system is stable in the sense of Lyapunov stability. To design a tracking controller for welding path reference, an error configuration is defined and the controller is designed to drive the error to zero as fast as desired. Moments of inertia of system are considered to be unknown system parameters. Their values are estimated using update laws in adaptive control scheme. The effectiveness of the proposed controller is shown through simulation results.

  • PDF

Robust High Gain Adaptive Output Feedback Control for Nonlinear Systems with Uncertain Nonlinearities in Control Input Term

  • Michino, Ryuji;Mizumoto, Ikuro;Iwai, Zenta;Kumon, Makoto
    • International Journal of Control, Automation, and Systems
    • /
    • v.1 no.1
    • /
    • pp.19-27
    • /
    • 2003
  • It is well known that one can easily design a high-gain adaptive output feedback control for a class of nonlinear systems which satisfy a certain condition called output feedback exponential passivity (OFEP). The designed high-gain adaptive controller has simple structure and high robustness with regard to bounded disturbances and unknown order of the controlled system. However, from the viewpoint of practical application, it is important to consider a robust control scheme for controlled systems for which some of the assumptions of output feedback stabilization are not valid. In this paper, we design a robust high-gain adaptive output feedback control for the OFEP nonlinear systems with uncertain nonlinearities and/or disturbances. The effectiveness of the proposed method is shown by numerical simulations.

End-point position control of a flexible arm by PID self-tuning fuzzy controller

  • Yang, G.T.;Ahn, S.D.;Lee, S.C.;Chonan, S.;Inooka, H.
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1993.10b
    • /
    • pp.496-500
    • /
    • 1993
  • This paper presents an end-point position control of 1-link flexible robot arm by the PID self-tuning fuzzy algorithm. The governing equation is derived by the extended Hamilton's principle and based on the Bernoullie-Euler beam theory. The governing equation is solved by applying the Laplace transform and the numerical inversion method. The arm is mounted on the translational mechanism driven by a ballscrew whose rotation is controlled by dcservomotor. Tip position is controlled by the PID self-tuning fuzzy algorithm so that it follows a desired position. This paper shows the experimental and theoretical results of tip dispalcement, and also shows the good effects reducing the residual vibration of the end-point.

  • PDF

Review of Active Rotor Control Research in Canada

  • Feszty, Daniel;Nitzsche, Fred
    • International Journal of Aeronautical and Space Sciences
    • /
    • v.12 no.2
    • /
    • pp.93-114
    • /
    • 2011
  • The current status of Canadian research on rotor-based actively controlled technologies for helicopters is reviewed in this paper. First, worldwide research in this field is overviewed to put Canadian research into context. Then, the unique hybrid control concept of Carleton University is described, along with its key element, the "stiffness control" concept. Next, the smart hybrid active rotor control system (SHARCS) projected's history and organization is presented, which aims to demonstrate the hybrid control concept in a wind tunnel test campaign. To support the activities of SHARCS, unique computational tools, novel experimental facilities and new know-how had to be developed in Canada, among them the state-of-the-art Carleton Whirl Tower facility or the ability to design and manufacture aeroelastically scaled helicopter rotors for wind tunnel testing. In the second half of the paper, details are provided on the current status of development on the three subsystems of SHARCS, i.e. that of the actively controlled tip, the actively controlled flap and the unique stiffness-control device, the active pitch link.

Development of a Small, Remote Controlled Ship for Observation of Marine Environment (소형 무인 해양 계측선 개발)

  • Lim, Jong-Hwan;Kang, Chul-Wong;Kim, Seong-Gun;Lee, Sang-Moo;Kim, Sang-Chul;Choi, Min-Ho;Kang, Chang-Mo
    • Proceedings of the Korea Committee for Ocean Resources and Engineering Conference
    • /
    • 2002.05a
    • /
    • pp.209-214
    • /
    • 2002
  • We developed a small, remote controlled observation ship that can reduce the cost of gathering data for marine and coastal environments. The control system is composed of three microprocessors, one is for overall mission control, another for control of propulsion motors, and the other for sensor operation. For communication system, we adopt direct and indirect methods based on the wireless modem of commercial cellular telephone. The former is a direct communication between the modems of the ship and the server, and the latter is an indirect communication via internet between the ship and the server. The performance of the ship is demonstrated with the results produced by sets of experiments.

  • PDF

The secondary excited induction generator in random wave input system

  • Kim, Moon-Hwan
    • Journal of information and communication convergence engineering
    • /
    • v.7 no.2
    • /
    • pp.209-214
    • /
    • 2009
  • The employment of the induction generator is preferable in the natural energy utilization by the minimum maintenance and the mechanical robustness, Another merit is also expected when it is connected to the power network system, because constant-voltage and constant frequency (CVCF) power generation is easily realized in spite of the variation of the rotor speed. However the induction generator needs much amount of the reactive power that reduces power factor in the primary side. The improvement of power factor in the primary side requires large VAR compensator, this point is solved, the merit of the induction machine as a main generator will become more established. This paper proposes a novel approach where the secondary is controlled by a PWM inverter not only to get CVCF power but also to improve the primary power factor. Basically the inverter is controlled so that the field current is supplied from the secondary side in this approach. The required capacity of the inverter is small, because only the slip power is controlled in the secondary side. In the experimental system where the sea wave torque simulator is used, the power factor is well improved by the microcomputer controlled PWM inverter.

Transmission Error Influences by Initial Tension of Timing Chain System (타이밍 체인 시스템의 초기 장력이 전달 오차에 미치는 영향)

  • Park, Yongsik;Jung, Taeksu;Hong, Yunhwa;Kim, Youngjin;Park, Youngkyun;Lee, Jungjin;Cho, Chongdu
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.25 no.2
    • /
    • pp.133-139
    • /
    • 2017
  • The timing chain system, which is a typical power transmission technology applied to a vehicle, has been widely used by the automotive industry because it is normally designed to last a car's lifetime. However, the timing chain system may cause some problems due to the shape of the chains and the polygonal behavior on contact between the chain and the sprocket. In addition, noise and vibration caused by transmission error are the most typical problems encountered by major automotive manufacturers and they are considered as the main source of customer complaint. The initial tension of the chain-sprocket system is thought to be the main cause of transmission error, and it is regarded as the source of engine vibration and noise. The initial tension of the chain system should be controlled carefully since a low initial tension can cause twisting, which may lead to a system malfunction, while a high initial tension can reduce the service life due to a worn down contact surface. In this paper, the kinematic analysis model is generated with various initial tensions, which are controlled by changing the shape of the fixed guide with the largest contact surface with chain. The results showed that the transmission error was minimized on a particular range of initial tension, and the tendency showed that the error changed with a higher sensitivity at a lower initial tension.

Dual Mode Feedback-Controlled Cycling System for Upper Limb Rehabilitation of Children with Cerebral Palsy

  • Cho, Seung-Yeon;Kim, Jihun;Seo, Seong-Won;Kim, Sung-Gyung;Kim, Jaehyo
    • International Journal of Advanced Culture Technology
    • /
    • v.7 no.1
    • /
    • pp.231-236
    • /
    • 2019
  • Background/Objectives: This paper proposes a dual mode feedback-controlled cycling system for children with spastic cerebral palsy to rehabilitate upper extremities. Repetitive upper limb exercise in this therapy aims to both reduce and analyze the abnormal torque patterns of arm movements in three- dimensional space. Methods/Statistical analysis: We designed an exercycle robot which consists of a BLDC motor, a torque sensor, a bevel gear and bearings. Mechanical structures are customized for children of age between 7~13 years old and induces reaching and pulling task in a symmetric circulation. The shafts and external frames were designed and printed using 3D printer. While the child performs active/passive exercise, angular position, angular velocity, and relative torque of the pedal shaft are measured and displayed in real time. Findings: Experiment was designed to observe the features of a cerebral palsy child's exercise. Two children with bilateral spastic cerebral palsy participated in the experiment and conducted an active exercise at normal speed for 3 sets, 15 seconds for each. As the pedal reached 90 degrees and 270 degrees, the subject showed minimum torque, in which the child showed difficulty in the pulling task of the cycle. The passive exercise assisted the child to maintain a relatively constant torque while visually observing the movement patterns. Using two types of exercise enabled the child to overcome the abnormal torque measured in the active data by performing the passive exercise. Thus, this system has advantage not only in allowing the child to perform the difficult task, which may contribute in improving the muscle strength and endurance and reducing the spasticity but also provide customizable system according to the child's motion characteristic. Improvements/Applications: Further study is needed to observe how passive exercise influences the movement characteristics of an active motion and how customized experiment settings can optimize the effect of pediatric rehabilitation for spastic cerebral palsy.