• Title/Summary/Keyword: Controlled cooling

Search Result 388, Processing Time 0.024 seconds

Study of Material Properties of High Strength Microalloyed Steel for Cold Forming by Controlled Rolling and Cooling Technology (제어압연.제어냉각기술로 제조된 냉간성형용 비조질강의 소재특성)

  • Kim, N.G.;Park, S.D.;Kim, B.O.;An, J.Y.;Choi, H.J.
    • Transactions of Materials Processing
    • /
    • v.15 no.8 s.89
    • /
    • pp.603-608
    • /
    • 2006
  • The main purpose of the present study has been placed on investigating the mechanical properties and microstructures of C-Si-Mn-V steels for cold forming manufactured by controlled rolling and cooling technology. The steels were manufactured in electric arc furnace (EAF) and casted to $160{\times}160mm$ billet. The billets were reheated in walking beam furnace and rolled to coil, the stocks were rolled by Controlled Rolling and Cooling Technology (CRCT), so rolled at low temperature by water spraying applied in rolling stage and acceleratly cooled before coiling. Rolled coils were cold drawed to the degree of 16%, 27% of area reduction respectively without heat treatment. Microstructual observation, tensile test, compression test and charpy impact tests were conducted. The mechanical properties of the steels were changed by area reduction of cold drawing and it is founded that there are optimum level of cold drawing to minimize compression stress for these steels. From the result of this study, it is conformed that $80kg_{f}/mm^{2},\;90kg_{f}/mm^{2}$ grade high strength microalloyed steel for cold forming are developed by accelerated cooling and optimum cold drawing.

Development of High Strength Microalloyed Steel for Cold Forming by Controlled Rolling and Cooling Technology (제어압연${\cdot}$제어냉각기술을 이용한 고강도 냉간성형용 비조질강의 개발)

  • Kim N. G.;Park S. D.;Kim B. O.;Choi H. J.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2005.05a
    • /
    • pp.321-324
    • /
    • 2005
  • The main purpose of the present study has been placed on investigating the effects of controlled rolling and cooling on the microstructures and mechanical properties of C-Si-Mn-V steels for cold forming. The steels were manufactured in vacuum induction melting(VIM) furnace and casted to 1.1ton Ingots and the ingots were forged to $\Box150$ billet. The forged billets were reheated in walking beam furnace and rolled to coil, the stocks were rolled by Controlled Rolling and Cooling Technology (CRCT), so rolled at low temperature by water spraying applied in rolling stage and acceleratly cooled before coiling. Rolled coils were cold drawed to the degree of $27\%$ of area reduction without heat treatment. Microstructual observation, tensile test, compression test and charpy impact tests were conducted. The mechanical properties of the steels were changed by area reduction of cold drawing and it is founded that there are optimum level of cold drawing to minimize compression stress for these steels. From the result of this study, it is conformed that mechanical properties and microstructure of C-Si-Mn-V steels for cold forming were enhanced by accelerated cooling and founded optimum level of cold drawing.

  • PDF

Microstructure and Mechanical Properties of Fe-Si-Mn-P High Strength Steel Sheet Controlled by Cooling Rate (냉각제어된 Fe-Si-Mn-P 고장력 강판의 미세조직 및 기계적성질)

  • Moon, Won-Jin;Kim, Ik-Su;Kang, Chang-Yong;Kim, Heon-Ju;Sung, Jang-Hyun;Kim, Ki-Don
    • Journal of the Korean Society for Heat Treatment
    • /
    • v.10 no.2
    • /
    • pp.109-120
    • /
    • 1997
  • Microstructure and mechanical properties of Fe-Si-Mn-P high strength steel sheet have been investigated by controlling the cooling rate. Bainite and ferrite were obtatined by annealing in the ferrite pluse austenite region, and ferrite and austenite were obtatined after annealing in the fully austenite region. Ferrite and pearlite were obtained when the cooling rate was controlled from the annealing temperature above $760^{\circ}C$ and bainite showed with increasing cooling rate, however below $760^{\circ}C$ ferrite and bainite were obtained. Tensile strengths and hardness nearly unchanged with increasing cooling rate after control the cooling rate from the temperature above $760^{\circ}C$, while tensile strengths increased and elongation decreased with increasing cooling rate when the cooling rate was controlled from the tempeature below $760^{\circ}C$. Without regard to annealing temperature, tensile strength increased and elongation decreased with increasing cooling rate. Tensile strengths and elongation values heat treated in the ferrite plus austenite region were higher than those in the fully austenite region. Retained austenite and strength-elongation balance showed the maximum value at $780^{\circ}C$ and decreased with increasing annealing temperature. Strength-elongation balance value was controlled by the retained austenite.

  • PDF

Effects of Controlled Cooling on Microstructures and Mechanical Properties of a Steel for Cold Forming (냉간성형용 강의 미세조직과 기계적성질에 미치는 제어냉각의 영향)

  • Kim N. G.;Park S. D.;Kim B. O.;Choi H. J.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2004.05a
    • /
    • pp.391-394
    • /
    • 2004
  • The main purpose of the present study has been placed on investigating the effects of controlled cooling on the microstructures and mechanical properties of 0.2C-0.2Si-0.8Mn-B steel for cold forming. The steel was processed in steel making factory(EAF, VD) and casted to $\Box160$ billet then reheated in walking beam furnace and rolled to coil, rolling stock was acceleratly cooled before coiling. Microstructual observation, tensile test and charpy impact tests were conducted. The mechanical properties and microsture of the steel were changed by cooling condition. The grain size of rolled product decreased with increasing cooling rate, resulting in increase of impact toughness and tensile strength, elongation and reduction of area . From the result of this study, it is conformed that mechanical properties and microstructure of 0.2C-0.2Si-0.8Mn-B steel for cold forming were enhanced by accelerated cooling.

  • PDF

Microstructure Characteristics and Identification of Low-Carbon Steels Fabricated by Controlled Rolling and Accelerated Cooling Processes (제어 압연과 가속 냉각에 의해 저탄소강에서 형성되는 미세조직의 특징과 구분)

  • Lee, Sang-In;Hong, Tae-Woon;Hwang, Byoungchul
    • Korean Journal of Materials Research
    • /
    • v.27 no.11
    • /
    • pp.636-642
    • /
    • 2017
  • In the present study the microstructure of low-carbon steels fabricated by controlled rolling and accelerated cooling processes was characterized and identified based on various microstructure analysis methods including optical and scanning electron microscopy, and electron backscatter diffraction(EBSD). Although low-carbon steels are usually composed of ${\alpha}-ferrite$ and cementite($Fe_3C$) phases, they can have complex microstructures consisting of ferrites with different size, morphology, and dislocation density, and secondary phases dependent on rolling and accelerated cooling conditions. The microstructure of low-carbon steels investigated in this study was basically classified into polygonal ferrite, acicular ferrite, granular bainite, and bainitic ferrite based on the inverse pole figure, image quality, grain boundary, kernel average misorientation(KAM), and grain orientation spread(GOS) maps, obtained from EBSD analysis. From these results, it can be said that the EBSD analysis provides a valuable tool to identify and quantify the complex microstructure of low-carbon steels fabricated by controlled rolling and accelerated cooling processes.

Optimal Control for Central Cooling Systems (중앙냉방시스템의 최적제어에 관한 연구)

  • 안병천
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.12 no.4
    • /
    • pp.354-362
    • /
    • 2000
  • Optimal supervisory control strategy for the set points of controlled variables in the central cooling system has been studied by computer simulation. A quadratic linear regression equation for predicting the total cooling system power in terms of the controlled and uncontrolled variables was developed using simulated data collected under different values of controlled and uncontrolled variables. The optimal set temperatures such as supply air temperature, chilled water temperature, and condenser water temperature, are determined such that energy consumption is minimized as uncontrolled variables, load, ambient wet bulb temperature, and sensible heat ratio, are changed. The chilled water loop pump and cooling tower fan speeds are controlled by the PID controller such that the supply air and condenser water set temperatures reach the set points designated by the optimal supervisory controller. The influences of the controlled variables on the total system and component power consumption was determined. It is possible to minimize total energy consumption by selecting the optimal set temperatures through the trade-off among the component powers. The total system power is minimized at lower supply, higher chilled water, and lower condenser water set temperature conditions.

  • PDF

A Proposal of Hybrid Cooling System Coupled with Radiation Panel Cooling and Natural Ventilation (자연환기와 복사냉방을 병용한 하이브리드 시스템의 제안)

  • 송두삼
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.15 no.6
    • /
    • pp.543-550
    • /
    • 2003
  • In order to saving the energy for HVAC system of buildings, utilization of wind-induced cross ventilation is thought to be promising. However, utilization of natural ventilation alone is not sufficient for maintaining the human thermal-comfort such as in hot and humid regions. A hybrid air conditioning system with a controlled natural ventilation system, or combination of natural ventilation with mechanical air conditioning is thought to overcome the deficiency of wind-driven cross ventilation and to have significant effects on energy reduction. This paper describes a concept of hybrid system and propose a new type of hybrid system using radiational cooling with wind-induced cross ventilation. Moreover, a radiational cooling system is compared with an all-air cooling system. The characteristics of the indoor environment will be examined through CFD (Computational Fluid Dynamics) simulation, which is coupled with a radiation heat transfer simulation and with HVAC control in which the PMV value for the human model in the center of the room is controlled to attain the target value.

Control Algorithm Development for Design of Cooling System in High-power Propulsion Motor (대용량 전기추진시스템 설계를 위한 제어알고리즘 개발)

  • Oh, Jin-Seok;Jung, Sung-Young;Kong, Yeong-Kyung;Bin, Jae-Goo;Kim, Han-Ho
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.34 no.1
    • /
    • pp.195-201
    • /
    • 2010
  • In this paper, a cooling system of high-power propulsion motor with Energy Saving System(ESS) is described. Normally, the cooling system for ship consists of fresh water pump, sea water pump, 3-way valve and cooler. In the cooling system, F.W(Fresh Water) and S.W(Sea Water) pump is operated on rated rpm, and the 3-way valve is controlled for preventing over-cooling. So, the consumption power of pump's motor is changed according to a sea water temperature. In the proposed cooling system, F.W. pump and S.W pump is controlled by inverter, and it is can be reduced the consumption power. Also, it is proved with simulation.

Reduction of Cooling Load using Outdoor Air Cooling (외기냉방을 이용한 냉방부하 절감 연구)

  • Kim, Min-Yang;Kim, Young-Il;Chung, Kwang-Seop
    • Journal of the Korean Society for Geothermal and Hydrothermal Energy
    • /
    • v.7 no.1
    • /
    • pp.51-58
    • /
    • 2011
  • Due to enhanced sealing and insulation of buildings, extensive use of glasses for building envelopes and increased use of heat generating office equipments, energy consumption of modem buildings for cooling is steadily increasing. With outdoor air cooling(ODAC) system, cooling load can be reduced by exchanging indoor air with the cold outdoor air during spring and fall seasons. If ODAC is operated based only on temperature, total cooling load may virtually increase if the outdoor humidity is high. To overcome this problem, ODAC should be controlled based on enthalpy. In this work energy saving characteristics of enthalpy controlled ODAC is studied using dynamic simulation. The result shows that cooling load can be reduced by 27% by adopting ODAC.

A Study on the Electronically Controlled Cooling system for Bimodal Tram (바이 모달 트램의 전기 제어 장치용 냉각장치에 관한 연구)

  • Kim, Chang-Uk;Kim, Hea-Soo;Song, Jung-Il
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.13 no.4
    • /
    • pp.91-98
    • /
    • 2014
  • In this study, the first and second electronically controlled cooling systems for a bimodal tram were developed. The performance characteristics of the cooling systems were assessed experimentally with actual and identical conditions, and a simulation was run using ANSYS Fluent. The results of the experimental and FEA method were standardized. In order to confirm the reliability of the experimental method, the experiment was carried out by a testing institution. The low-volume flow-rate condition was found to be better, but the cooling system performed in a minimal condition. Therefore, it is important to find the optimum performance levels. The cooling system equipment was revised to determine the optimized design parameters, after which the cooling performance levels increased at the radiation area. Specifically, with a greater fan diameter. Through this study, the newly developed cooling system will be reevaluated after being mounted on an actual bimodal tram. This will lead to a completely domestically produced bi-modal tram cooling system.