• Title/Summary/Keyword: Controlled Release

Search Result 584, Processing Time 0.023 seconds

Development of Multiparticulate-system Composed of Sustained Release-microspheres of Pseudoephedrin${\cdot}$HCI and Immediate Release-pellets of Terfenadine Using Solvent Evaporation Method and Spherically Agglomerated Crystallization Process (수용성 염산슈도에페드린과 난용성 테르페나딘의 구형정석조립법과 액중미립구법을 이용한 서방성펠렛 복합제제의 개발)

  • Rhee, Gye-Ju;Do, Ki-Chan;Kim, Eun-Hee;Park, Jong-Bum;Whang, Sung-Joo
    • YAKHAK HOEJI
    • /
    • v.41 no.3
    • /
    • pp.305-311
    • /
    • 1997
  • Sustained release-microspheres and immediate release-pellets were prepared to develop a controlled release multiparticulate system containing both water soluble and insoluble dr ug. Pseudoephedrin.HCl (EPD) and terfenadine (TRF) were used as model drugs, respectively. Sustained release-EPD microspheres were prepared by solvent evaporation method using Eudragit RL or RS as a matrix combined with pH-insensitive film coating. Smaller EPD microspheres were obtained when smaller amount of Eudragit as a matrix material or larger amount of magnesium stearate as a dispersing agent was used. However the obtained microspheres did not show syfficient sustained release characteristics. About 97% of EPD was released after 1 hr irrespective of matrix material used. Subsequent coating of the microspheres with pH-insensitive polymer such as Eudragit RS or ethylcelulose (EC) resulted good sustained in 37.5, 73.3 and 92.0% release of encapsulated EPD in distilled water after 1, 3 abd 7 hr, respectively. It corresponds to mean dissolution time (MDT) of 2.3 hr, which is much larger than that of un-coated EPD microspheres (0.0048 hr). Immediate release TRF pellets were prepared by spherically agglomerated crystallization using Eudragit E as an inert matrix and methylene chloride as a liquid binder. Using Eudragit E alone as a matrix resulted in satisfactory physical properties of the pellets such as sphericity, surface texture and flowability, but led to slower release of TRF from pellets than un-modified TRF powder (MDT of 1.70 vs 1.43 hr in pH 1.2 dissolution medium). Introducing propylene glycol or sodium lauryl sulfate as an emulsifier brought about faster release of TRF from pellets (MDT of 1.14 and 0.95 hr, respectively). In conclusion, microencapsulation by solvent evaporation combined with film coating and spherically agglomerated crystallization were successfully utilized to prepare controlled release multiparticulate system composed of sustained release EPD-microspheres and immediate release TRF pellets.

  • PDF

Development of Sustained Release Microcapsules Containing Ion Exchange Resin-Dextromethorphan Hydrobromide Complex (이온교환수지 - 브롬화수소산덱스트로메토르판 복합체의 서방성 마이크로캅셀 개발에 관한 연구)

  • Kim, Chong-Kook;Hwang, Su-Won;Hwang, Sung-Joo;Lah, Woon-Lyong
    • Journal of Pharmaceutical Investigation
    • /
    • v.19 no.2
    • /
    • pp.99-107
    • /
    • 1989
  • In order to develop a pediatric liquid preparation with sustained release properties, dextromethorphan hydrobromide (DEXT) was complexed with strong cation exchange resin (CG 120) and the-complex was coated with Eudragit RS using a phase separation method by non-solvent addition. The effect of pH, ionic strength of the release medium and drug/resin ratio on the release rate of DEXT was studied. The release rate of free drug from the uncoated complex, and coated complexes with 9.5 and 18.5% Eudragit RS in artificial gastric juice were measured. The release rate from the uncoated complex was faster with higher pH, higher ionic strength of the release medium and higher drug/resin ratio. The release rate from the coated complex could be controlled by the amount of coating material, and the surface after release did not rupture into.

  • PDF

Stereocomplex Poly(lactic acid) Discoidal Microparticles for Sustained Drug Release (약물지연방출을 위한 스테레오컴플렉스 PLA 원반형 마이크로입자)

  • Park, Chaewon;Park, Sanghyo;Kim, Woo Cheol;Key, Jaehong
    • Journal of Biomedical Engineering Research
    • /
    • v.41 no.1
    • /
    • pp.62-66
    • /
    • 2020
  • Controlled drug release is important for effective treatment of cancer. Poly(DL-lactide-co-glycolide) acid (PLGA) is a Food and Drug Administration (FDA) approved polymer and have been extensively studied as drug delivery carriers with biodegradable and biocompatible properties. However, PLGA drug delivery carriers are limited due to the initial burst release of drug. Certain drugs require an early rapid release, but in many cases the initial rapid release can be inefficient, reducing therapeutic effects and also increasing side effects. Therefore, sustained release is important for effective treatment. Poly Lactic Acid stereo complex (PLA SC) is resistant to hydrolysis and has high stability in aqueous solutions. Therefore, in this work, PLGA based discoidal polymeric particles are modified by Poly Lactic Acid stereocomplex (PLAsc DPPs). PLAsc DPPs are 3 ㎛ in diameter, also showing a relatively sustained release profile. Fluorescein 5(6)-isothiocyanate (FITC) released from PLAsc DPPs was continuously observed until 38 days, which showed the initial release of FITC from PLAsc DPPs was about 3.9-fold reduced as compared to PLGA based DPPs at 1 hour.

Preparation and In Vitro Release of Ramose Chitosan-Based-5-Fluorouracil Microspheres

  • Li, He-Ping;Li, Hui;Wang, Zhou-Dong;Zhang, Juan-Juan;Deng, Man-Feng;Chen, San-Long
    • Journal of the Korean Chemical Society
    • /
    • v.57 no.1
    • /
    • pp.88-93
    • /
    • 2013
  • In order to construct a controlled release system of drugs and to reduce toxic side effects of 5-fluorouracil, the novel ramose chitosan-based-5-fluorouracil microspheres (CS-FU-MS) were prepared. Firstly, using chitosan (CS) as carriers and 5-fluorouracil (5-FU) as a model drug, ramose chitosan-based-5-fluorouracil (CS-FU) was efciently synthesized by chemical crosslinking method through microwave irradiation, drug loading was 10.6%; Secondly, CS-FU-MS were prepared by CS-FU self-assembled under the dialysis conditions and the free 5-FU was encapsulated further at the same time. The size dispersivity of particles is uniform, and the average diameter of the CS-FU-MS was $4{\mu}m$. The drug encapsulation efficiency was 76.1%, and the drug loading was increased to 26.22%. CS-FU-MS maintain the zero-order release time in PBS (pH = 7.4) and HCl/KCl (pH = 1.2) dialysis medium was 40h and 34h respectively, and the cumulative release were 58.89% and 79.33% in 182 h. The results showed that CS-FU-MS have excellent sustained release properties.

Proliposomal Clenbuterol Patch for Transdermal Delivery (프로리포솜을 이용한 클렌부테롤의 경피흡수 제제화)

  • Lee, Young-Joo;Chung, Suk-Jae;Lee, Min-Hwa;Shim, Chang-Koo
    • Journal of Pharmaceutical Investigation
    • /
    • v.27 no.4
    • /
    • pp.303-311
    • /
    • 1997
  • Proliposomal patch of clenbuterol, ${\beta}_2-agonist$ bronchodilator, was prepared and its feasibility as a novel transdermal drug delivery system was examined. Proliposomal granules containing clenbuterol was prepared by a standard method using sorbitol and lecithin with (Rx 2) or without cholesterol (Rx 1). The porous structure of sorbitol in the proliposomes was maintained allowing tree flowability of the granules. Following contact with water, the granules were converted probably to liposomes almost completely within several minutes. It indicates that proliposomes may be hydrated, when they are applied on the skin under occlusive condition in vivo, by the sweat to form liposomes. Clenbuterol release from Rx 1 and Rx 2 proliposomes to pH 7.4 isotonic phospate buffer (PBS) across cellulose membrane (mol. wt. cut-off of 12000-14000) was retarded significantly compared with that from the mixture of clenbuterol powder and blank proliposomes. Interestingly, proliposomes prepared with lecithin and cholesterol (i.e., Rx 2 proliposomes) showed much more retarded release of clenbuterol than proliposomes prepared only with lecithin (i.e.. Rx 1 proliposomes), indicating that clenbuterol release from proliposomes can be controlled by the addition of cholesterol to the proliposomes. Proliposomal patches were prepared using PVC film as an occlusive backing sheet, two sides adhesive tape (urethane, 1.45 mm thickness) as a reservoir for proliposome granules and Millipore MF-membrane (0.45 mm pore size) as a drug release-controlling membrane. Rx 1 or Rx 2 proliposomes containing 4.6 mg of clenbuterol were loaded into the reservoir of the patch. Clenbuterol release from the patches to pH 7.4 PBS was determined using USP paddle (50 rpm)-over-disc release method. Clenbuterol release from the proliposomal patches was much more retarded even than from a matrix type clenbuterol patch (Boehringer Ingelheim ltd). Being consistent with clenbuterol release from the proliposomal granules, the release from the patches was highly dependent on the presence of cholesterol in the proliposomes : Patches containing Rx 2 proliposomes showed several fold slower drug release than patches containing Rx 1 proliposomes. When the patch containing Rx 1 proliposomes was applied on to the back of a hair-removed rat, clenbuterol concentration in the rat blood was maintained during 6-72 hrs. Transdermal absorption of clenbuterol from the patch was accelerated when the patch was prehydrated with 50 ml of pH 7.4 PBS before topical application. Above results indicate that sustained transdermal delivery of clenbuterol is feasible using proliposomal patches if the cholesterol content and pore size of the release rate-controlling membrane of patches, for example, are appropriately controlled.

  • PDF

Swelling and Drug Release Characteristics of Poly (ethylene oxide)-Poly (methacrylic acid) Interpenetrating Networks (폴리에틸렌 옥사이드-폴리메타크릴산 IPN 공중합체의 팽윤 및 약물 방출특성)

  • Lee, Seung-Jin
    • Journal of Pharmaceutical Investigation
    • /
    • v.21 no.3
    • /
    • pp.149-153
    • /
    • 1991
  • Polyethylene oxide (PEO)-polymethacrylic acid (PMAA) interpenetrating polymer networks (IPN) were synthesized via radical polymerization of PMAA and simultaneous crosslinking of PEO using triisocyanate. The equilibrium swelling of PEO-PMAA IPN was determined at different pHs. The swelling of PEO-PMAA IPN, ranged from 20% to 90%, was more sensitive than that of homo polymer PMAA gel This is probably due to protonation and deprotonation of the PMAA network and interpolymer complex formation between PEO and PMAA. Several model drugs were loaded into the IPN matrices and the release mechanisms were investigated. The release of nonionizable drugs such as ftorafur and prednisolone was controlled by swelling of the matrices. However, he release of propranolol, positively charged drug, was more affected by the ionic interaction between the drug and PMAA newtork, and the interpolymer complexation.

  • PDF

Study on the Design of Contraceptive Agent(I) (피임제(避妊劑) 제형(製型) 개발(開發)에 관(關)한 연구(硏究)(I))

  • Kim, S.H.;Choi, J.S.;Baik, C.S.
    • Journal of Pharmaceutical Investigation
    • /
    • v.11 no.3
    • /
    • pp.14-20
    • /
    • 1981
  • One of the major objectives in the developments of a progesterone I.U.D. is to prepare devices which release drug at a constant rate for extended periods. A constant release rate is achived by maintaining drug concentration at a constant valve via the introduction of rate limiting membrane to solute diffusion at the surface of the devices. In this study, progesterone dispersed at monolithic device were prepared from polyhydroxy ethyl methacrylate. Constant release rate were obtained with device which were soaked in on ethanol-hexan solution. The release rate was dependant upon the concentration of the ethanolic solution in the soaking solution. This devices offer significant potential for futher development of hydrogel in the intrauterine contraception device for controlled release of progesterone.

  • PDF

Control of Drug Release by Poly ${\beta}>-hydroxybutyric$ Acid (Poly ${\beta}>-hydroxybutyric$ Acid를 이용한 약물방출 조절)

  • 나재운;김종균김선일
    • KSBB Journal
    • /
    • v.6 no.1
    • /
    • pp.79-83
    • /
    • 1991
  • Using PHB biopolymer as polymer matrix, the release mechanism of a model drug, silver sulfadiazine was studied. The release behavior actually conformed to the Higuchi's diffusion controlled model. The release rate was delayed with an increasing proportion of PHB, whereas decreased as glycerine concentration incresed. The release rate was increased as the polymer matrix thickness increased.

  • PDF