• 제목/요약/키워드: Controlled Environment Agriculture

Search Result 137, Processing Time 0.039 seconds

Growth Characteristics of Common Ice Plant (Mesembryanthemum crystallinum L.) on Nutrient Solution, Light Intensity and Planting Distance in Closed-type Plant Production System (완전제어형 식물 생산 시스템에서 배양액, 광도 및 재식거리에 따른 Common Ice Plant의 생육 특성)

  • Cha, Mi-Kyung;Park, Kyoung Sub;Cho, Young-Yeol
    • Journal of Bio-Environment Control
    • /
    • v.25 no.2
    • /
    • pp.89-94
    • /
    • 2016
  • This study was conducted to determine the optimum nutrient solution, pH, irrigation interval, light intensity and planting density to growth of common ice plant (Mesembryanthemum crystallinum L.) in a closed-type plant production system. Three-band radiation type fluorescent lamps with a 12-h photoperiod were used. Nutrient film technique systems with three layers were used for the plant growth system. Environmental conditions, such as air temperature, relative humidity and $CO_2$ concentration were controlled by an ON/OFF operation. Treatments were comparison of the nutrient solution of Horticultural Experiment Station in Japan (NHES) and the nutrient solution of Jeju National University (NJNU), pH 6.0 and 7.0, irrigation interval 5 min and 10 min, light intensity 90 and $180{\mu}mol{\cdot}m^{-2}{\cdot}s^{-1}$, and within-row spacing 10 cm, 15 cm, 20 cm and 25 cm with between-row spacing 15 cm. Optimum macronutrients were composed N 7.65, P 0.65, K 4.0, Ca 1.6 and Mg $1.0mM{\cdot}L^{-1}$. There were no significant interactions between pH 6.0 and 7.0 about shoot fresh weight and shoot dry weight of common ice plant. Irrigation interval 5 min and 10 min was also the same result. Shoot fresh weight and shoot dry weight were highest at $180{\mu}mol{\cdot}m^{-2}{\cdot}s^{-1}$. Shoot fresh weight and shoot dry weight were decreased according to increasing the planting density. From the above results, we concluded that optimum nutrient solution, optimum levels of pH, irrigation interval, light intensity and planting density were 6.0-7.0 and 10 min, $180{\mu}mol{\cdot}m^{-2}{\cdot}s^{-1}$ and $15{\times}15cm$, respectively for growth of common ice plant in a closed-type plant production system.

The Effect of Nutrient Solution Concentration on Growth of Potato Plantlet in Microponic System (Microponic system에서 배양액의 농도변화가 감자 소식물체 생육에 미치는 영향)

  • Ko, Sun A;Choi, Ki Young;Lee, Yong-Beom
    • Journal of Bio-Environment Control
    • /
    • v.23 no.2
    • /
    • pp.144-147
    • /
    • 2014
  • It was intended to closely examine an effect that a change in the concentration of culture medium had on the potato(Solanum tuberosum L.) plantlet growth in the microponic system so as to mass-produce the virus-free plant of new variety 'Saebong' for potato processing. The adjusted concentration of potato culture medium was 0.2, 0.6, 1.0, 1.4, 1.8, and $14.0dS{\cdot}m^{-1}$. And potato seedling was cut into pieces of 1.5 cm in length, which included 2 growth points and leaves. And each was explanted in glass vial of 50 mL. And experiments were carried out twice for 18 days or 21days. Culture medium of 2ml was put in the container respectively. And 1 mL was added after 10 days. And in terms of cultivation environment, the experiment was carried out at the day length of 16 hours at the temperature of $23{\pm}1^{\circ}C$ under the white LED light of $40{\mu}mol{\cdot}m^{-2}{\cdot}s^{-1}$. The concentration of culture medium in the experiment I was EC 0.2, 1.0, $14dS{\cdot}m^{-1}$ and was adjusted to 0.6, 1.0, 1.4, $1.8dS{\cdot}m^{-1}$ in the experiment II. The results showed that the survival rate of plantlet was 90% at $0.2dS^2m^{-1}$, 100% at $0.6dS^2m^{-1}$, 100% at $1.0dS^2m^{-1}$. 0% at $1.4dS{\cdot}m^{-1}$, 0% at $1.8dS{\cdot}m^{-1}$. and 0% at $14.0dS{\cdot}m^{-1}$ after 7 days. With regard to the explanted potato seedling, in case of the treatment where the electrical conductivity of culture medium was adjusted to $1.0dS{\cdot}m^{-1}$, root developed 2 days after transplantation. And the plantlet vigorously grew into strong plant that had 7 leaves, length of 5cm, and fresh weight of 0.5 g after 18 days. In case of the treatment where the concentration of culture medium was adjusted to $0.6dS{\cdot}m^{-1}$, the root plantlets developed 4 days after transplantation. And those grew into plant that had 7 leaves and fresh weight of 0.2 g after 21 days. Therefore, we found that it is effective to control potato culture medium by adjusting its electrical conductivity to $0.6{\sim}1.0dS{\cdot}m^{-1}$ for the mass production of virus-free potato seedling in the microponic system.

Evaluation of Scab Resistance and Effect of Photosynthetic Rates on Fruit Characteristics among Elite Pear Seedlings (배 우량계통의 검은별무늬병 저항성 평가 및 광합성률이 과실 품질에 미치는 영향 구명)

  • Won, Kyung-Ho;Kang, Sam-Seok;Kim, Yoon-Kyeong;Sherzod, Rajametov;Lim, Kyeong-Ho;Lee, Han-Chan
    • Korean Journal of Environmental Agriculture
    • /
    • v.32 no.2
    • /
    • pp.117-122
    • /
    • 2013
  • BACKGROUND: The scab, which is caused by Venturia nashicola, gives serious damages to pear trees. 'Niitaka' accounts for 82% of areas in pear cultivation. However 'Niitaka' is a scab susceptible cultivar. So, most of Korean farmers who growing pear trees have suffered by economic losses with the scab. In this research, we evaluated the scab resistance among elite pear seedlings to clarify genetics about the scab resistance. And we analyzed photosynthetic features with these seedlings to develop suitable cultivar which is advantageous for producing quality fruits during the growth and development of plants. METHODS AND RESULTS: We measured the rates of scab incidence among seedlings in a field experiment condition and an in-vitro test. An in-vitro test has been done with field experiment-based results. We made plant materials by grafting branches of each seedlings with 'Kongbae' rootstocks. And they had been grown for one month. Then, scab conidia suspension is sprayed to seedlings and sustained for 40 days under the controlled environment. As the results, 6 seedlings displayed lower incidence rates than other seedlings and 'Niitaka'. We also measured instant photosynthetic rates of each seedlings to determine the correlation between photosynthetic rates and fruit characteristics. However, it seemed that there is no correlation between them. CONCLUSION(S): Among the seedlings, 6 seedlings displayed the higher resistance to scab than other seedlings and 'Niitaka'. This characteristics is considered to be come from the gene expression of European pear. And we found that photosynthetic rate in trees rarely does not influence the fruit characteristics. It is considered to be affected by cultivar's own characteristics.

Effect of Root Zone Cooling Using the Air Duct on Temperatures and Growth of Paprika During Hot Temperature Period (공기순환 덕트를 이용한 근권부 냉방이 고온기 파프리카 재배에서 온도와 생육에 미치는 영향)

  • Choi, Ki Young;Jang, Eun Ji;Rhee, Han Cheol;Yeo, Kyung-Hwan;Choi, Eun Young;Kim, Il Seop;Lee, Yong-Beom
    • Journal of Bio-Environment Control
    • /
    • v.24 no.3
    • /
    • pp.243-251
    • /
    • 2015
  • This study aimed to determine the effects of root zone cooling using air duct on air temperature distribution and root zone and leaf temperatures of sweet pepper (Capsicum annum L. 'Veyron') grown on coir substrate hydroponic system in a greenhouse. When the air duct was laid at the passage adjacent the slab, the direction of air blowing was upstream at $45^{\circ}$. The cooling temperature was set at $20^{\circ}C$ for day and $18^{\circ}C$ for night. For cooing timing treatments, the cooling air was applied at all day (All-day), only night time (5 p.m. to 1 a.m.; Night), or no cooling (Control). The air temperature inside the greenhouse at a height of 40 and 80cm above the floor, and substrate and leaf temperatures, fruit characteristics, and fruit ratio were measured. Under the All-day treatment, the air temperature was decreased about $4.4{\sim}5.1^{\circ}C$ at the height of 40cm and $2.1{\sim}3.1^{\circ}C$ at the height of 80cm. Under the Night treatment, the air temperature was decreased about $3.4{\sim}3.8^{\circ}C$ at the height of 40cm and $2.2{\sim}2.7^{\circ}C$ at the height of 80cm. The daily average temperature in the substrate was in the order of the Control ($27.7^{\circ}C$) > Night ($24.1^{\circ}C$) > All-day ($22.8^{\circ}C$) treatment. Cooling the passage with either upstream blowing at $45^{\circ}$ or horizontal blowing at $180^{\circ}$ was effective in lowering the air temperature at a height of 50cm; however, no difference at a height of 100cm. Cooling the passage with perpendicular direction at $90^{\circ}$ was effective in lowering the air temperature at the height between 100 and 200cm above the floor; however, no effect on the temperature at the height of 50cm. A greater decrease in leaf temperature was found at 7 p.m. than that at 9. a.m. under both All-day and Night treatments. Fresh weight partitioning of fruit was in the order of the All-day (48.6%) > Night (45.6%) > Control (24.4%) treatment. A higher fruit production was observed under the All-day treatment, in which the accumulated average temperature was the lowest, and it may have been led to a higher proportion of photosynthate distributed to fruit than other treatments.

Effect of Drainage Reusing Ratio on Growth and Yield of Summer-cultivated Paprika in Recycling Hydroponic Cultivation (순환식 수경재배에서 배액 재사용율이 여름작형 파프리카의 생육 및 수량에 미치는 영향)

  • Jang, Dong-cheol;Choi, Ki-Young;Kim, II-Seop
    • Journal of Bio-Environment Control
    • /
    • v.26 no.1
    • /
    • pp.7-12
    • /
    • 2017
  • This experiment was conducted to analyze the effect of drainage reuse rate on the growth and fruiting of summer paprika in closed hydroponic cultivation. The experiment was carried out for 25 weeks from March to September 2015 with 0, 20, 30, 50% mixing ratio of waste nutrient solution using non - recycling hydroponic cultivation as a control. As a result, stem diameter of the test was different in the groups 1 and 2, but no difference showed as the group progressed more than 3 groups. L.A.I tended to decrease with increasing drainage mixing ratio. The number of nodes in the 50% reuse test group was 1.4 compared to the control group, but there was no significant difference. The number of harvested nodes was significantly different in the control group (11.1 nodes) and the 50% reuse test group (8.7 nodes), and the harvested nodes tended to decrease as the drainage was reused. The ratio of harvest was also the same as that of the harvesting node, and the control was the highest at 33.2% and the lowest at the 50% reuse test at 27.6%. Relative yields were reduced by 30%, 35% and 45% in the control group in the first group, and this tendency was also observed in the second and fourth groups. However, in the 3 and 5 groups, the production of 50% test group increased by 13% and 5%. The ratio of unmarketable fruit was increased 2%, 4%, 4%, and 7% in 0%, 20%, 30% and 50% reuse test, respectively. In conclusion, if the decrease in yield due to the decline in early growth is carefully managed, even if the imbalance of inorganic ions occurs after the mid-term growth, the growth of the crop will enter into a stable period and the re-use will not be worried about the growth and the yield decrease.

Influence of Short-term Application of Abscisic Acid in Nutrient Solution on Growth and Drought Tolerance of Tomato Seedlings (토마토 육묘과정에서 단기간 ABA처리가 묘소질과 건조내성에 미치는 영향)

  • Kim, Il-Seop;Vu, Ngoc-Thang;Vo, Hoang-Tung;Choi, Ki-Young;Kim, Young Shik
    • Journal of Bio-Environment Control
    • /
    • v.24 no.1
    • /
    • pp.13-20
    • /
    • 2015
  • This study was conducted to evaluate influence of short-term application of abscisic acid (ABA) in nutrient solution on growth and drought tolerance of tomato seedlings. The treatments included four ABA concentrations (0.5, 1, 2, $3mg{\cdot}L^{-1}$) and control (non-treatment) were applied to the nutrient solution in a hydroponic system. On the $5^{th}$ and $10^{th}$ day after growing in the nutrient solution containing ABA, seedlings were transferred to -5 bars of PEG-8000 in a growth chamber to induce water stress. Except for stem diameter and fresh and dry weight of root, there were no statistical differences in other growth parameters among control, 0.5 and $1mg{\cdot}L^{-1}$ of ABA treatments. Seedlings growths were strongly inhibited in nutrient solution containing 2 and $3mg{\cdot}L^{-1}$ of ABA. The root growth such as fresh and dry weigh of root, total root surface area, and average root diameter was slightly enhanced in $1mg{\cdot}L^{-1}$ of ABA treatment. The elevation of ABA concentrations in nutrient solution resulted in the decrease in transpiration rate and increase in stomatal diffusive resistance and leaf temperature of tomato seedlings. The initiations of seedling wilting after treating in -5 bars of PEG were delayed from 10 hrs in control to 30 hrs in ABA applied treatments. Additionally, the high percentages of recovered seedlings were observed in 0.5 and $1mg{\cdot}L^{-1}$ of ABA treatments after re-irrigation. Therefore, short-term application of $1mg{\cdot}L^{-1}$ of ABA in the nutrient solution stimulated the root growth and drought tolerance of tomato seedlings by delaying the start time of wilting point and enhancing the recovery after re-irrigation.

Measuring Water Content Characteristics by Using Frequency Domain Reflectometry Sensor in Coconut Coir Substrate (FDR(Frequency Domain Reflectometry)센서를 이용한 코코넛 코이어 배지내 수분특성 측정)

  • Park, Sung Tae;Jung, Geum Hyang;Yoo, Hyung Joo;Choi, Eun-Young;Choi, Ki-Young;Lee, Yong-Beom
    • Journal of Bio-Environment Control
    • /
    • v.23 no.2
    • /
    • pp.158-166
    • /
    • 2014
  • This experiment has investigated suitable methods to improve precision water content monitoring of coconut coir substrates to control irrigation by frequency domain reflectometry(FDR) sensors. Specifically, water content changes and variations were observed at different sensing distances and positions from the irrigation dripper location, and different spaces between the FDR sensors with or without noise filters. Commercial coconut coir substrates containing different ratios of dust and chips(10:0, 7:3, 5:5, 3:7) were used. On the upper side and the side of the substrates, a FDR sensor was used at 5, 10, 20, 30cm distances respectively from the irrigation dripper point, and water content was measured by time after the irrigation. In the glass beads, sensors were installed with or without noise filtering. Closer sensing distance had a higher water content increasing rate, regardless of different coir substrate ratios. There were no differencies of water content increasing rates in 10:0 and 3:7 substrates between the upper side and the side. Whereas, 7:3 and 5:5 substrates showed higher increasing rates on the upper side measurements. Substrates with higher ratios of chip(3:7) had lower increasing rates than others. And, with noise filters, the exatitude of measurement was improved because the variation and deviation were reduced. Therefore, in coconut coir with FDR sensors, an efficient water content measurment to control irrigations can be achieved by installing sensors closer to an irrigation point and upper side of substrates with noise filters.

Effects of Harvest Time on Growth and Phytochemical Contents of Baby Leaf Vegetables in Multi-layer System (다단재배에서 수확시기가 어린잎 채소의 생육과 항산화물질 함량에 미치는 영향)

  • Kim, Jae Kyung;Kang, Ho Min;Kim, Il Seop;Choi, Eun Young;Choi, Ki Yong
    • Journal of Bio-Environment Control
    • /
    • v.26 no.3
    • /
    • pp.194-200
    • /
    • 2017
  • This study aimed to determine the suitable of harvest time on the growth and quality of baby leafy vegetables (Agastsche rugosa O. Kuntze and Lepidium sativum L.) grown on rice seedling tray in a six-layered bench system at 30cm intervals in order to exploit the space during rice growing off-season. Seedlings were grown on the rice seedling tray for 10 days after sowing with coir substrate supplied with nutrient solution at EC $1.5dS{\cdot}m^{-1}$ every 2 days prior to placing the tray on the bench, which were at $1^{st}$ (Low) layer above 20cm and $6^{th}$ (High) layer above 170cm apart from the ground. Growth and phytochemical contents were measured at 7-day and 14-day harvest time. During the culture periods, daily average of integrated solar radiation and temperature were $9.3{\sim}9.6MJ{\cdot}m^{-2}$, $27.5^{\circ}C$ in the High layer and $5.1{\sim}6.2MJ{\cdot}m^{-2}$ in average, and $26.5{\sim}26.6^{\circ}C$ in the Low layer, respectively. For A. rugosa, the highest growth was observed in the Low layer bench at a 14-day harvest time, while their plant height in the High layer was shorter and the leaf number was lower. For L. sativum, the plant height, leaf length and width, leaf number and fresh weight were higher in the Low layer. For A. rugosa, a high yield was observed with the increase in integrated temperature and integrated solar radiation, while a higher yield of L. sativum was found with the increase in integrated temperature, but not with integrated solar radiation. For A. rugosa, both polyphenol and anthocyanin contents were higher in the High layer at a 14-day harvest time. For L. sativum, polyphenol contents were higher in the High layer, whereas no significant difference in anthocyanin and flavonoid contents was observed depending on the layer and harvest time. The highest chlorophyll content showed in Low layer at a 7-day harvest time in both A. rugose and L. sativum. All of the results suggest that in terms of growth and quality, it may be better growing in the high layer for 14 days after seedling in A. rugosa, and low layer for 7 days in L. sativum.

Effect of Various Composition of Nutrient Solution on Growth and Yield of Strawberry 'Maehyang' in Coir Substatrate Hydroponics (다양한 배양액 조성이 코이어 수경재배 딸기 '매향'의 생육과 수량에 미치는 영향)

  • Lee, Jeong Hun;Lee, Yong-Beom;Choi, Ki Young
    • Journal of Bio-Environment Control
    • /
    • v.26 no.3
    • /
    • pp.227-234
    • /
    • 2017
  • This study aimed to investigate the nutrient solution developed by based on nutrient-water absorption rate of strawberry 'Maehyang' by comparing growth and yield for 8 months with 5 kinds of nutrient solution with different ion composition. Strawberry plants were planted at elevated bed and supplied with five kinds of nutrient solutions (RDA), Yamazaki, PBG, University of Seoul (UOS) and NewUOS from one month onwards. Five types of nutrient solution were supplied to the strawberry plants associated with EC $1.0dS{\cdot}m^{-1}$, pH 6.0, $150{\sim}300mL{\cdot}plant^{-1}$ per day. At 60 days after planting, leaf width and leaf petiole of the strawberry plants showed significant differences among nutrient solution types and photosynthesis was higher in RDA and NewUOS nutrient solution and lower in PBG nutrient solution. The EC of the drainage on vegetative growth stage was $0.7{\sim}0.8dS{\cdot}m^{-1}$, which is lower than the supplied EC level, and to $1.0-1.2dS{\cdot}m^{-1}$, afterwards. The pH of the drainage was higher in Yamzaki solution as 6.2~6.8, while the pH of the UOS nutrient solution was lower in 5.1~5.2. Nitrate content was most absorbed in vegetative growth stage and after flower clusters development. The potassium uptake was highest at the NewUOS followed by UOS and Yamazaki nutrient solution. At six months after -planting fresh weight and dry weight of shoot and root were higher in UOS and NewUOS nutrient solution than other nutrient solutions, and the dry matter ratio was lower at 43.5% in Yamazaki nutrient solution and 30.6% in NewUOS nutrient solution than other solutions. Length, width, weight, and sugar content of the strawberries harvested from December to February were unaffected by treatment, but yield was higher in NewUOS nutrient solution due to increasing fruit number and average weight. From March to May, number of fruit was higher in Yamazaki nutrient solution. In conclusion, there was no difference in the growth of 'Maehyang' when 5 nutrient solutions were grown under hydroponics. But in order to improve the marketability, the NewUOS nutrient solution is appropriate to use from planting to February and it is suitable to use Yamazaki nutrient solution after March when temperature is high and the amount of fruit set per inflorescence.

Effects of Carbon Dioxide Fertilization on the Quality and Storability of Strawberry 'Maehyang' (재배 시 탄산시비가 딸기 '매향' 의 품질과 저장성에 미치는 영향)

  • Choi, In-Lee;Yoon, Jae Su;Yoon, Hyuk Sung;Choi, Ki-Young;Kim, Il-Seop;Kang, Ho-Min
    • Journal of Bio-Environment Control
    • /
    • v.26 no.2
    • /
    • pp.140-145
    • /
    • 2017
  • This study was conducted to find out the effects of $CO_2$ fertilization (1,000ppm) on the quality and storability of 'Maehyang' strawberry fruits. Qualities such as firmness, soluble solid, and acidity of strawberry fruits showed higher numbers in those treated with $CO_2$ fertilization compared to those after harvest. Strawberry fruits were stored at $8^{\circ}C$; MA condition using $20,000cc{\cdot}m^{-2}{\cdot}day^{-1}{\cdot}atm^{-1}$ OTR (oxygen transmission rate) films and conventional condition using unsealed PE box stored for 20 and 10 days, respectively. Fresh weight loss rate was less than 1.0% in MA storage regardless of $CO_2$ fertilization treatment. Concentrations of oxygen, carbon dioxide, and ethylene in OTR films did not show any significant difference between $CO_2$ fertilization treatment and control (nontreatment) during storage. $CO_2$ fertilization treatments maintained higher firmness after storage regardless of storage methods, but soluble solid, acidity, and surface color did not differ among the treatments. Visual quality and off-flavor based on sensory evaluation was the highest in $CO_2$ fertilization treated strawberry and stored at a MA condition, and was the lowest in $CO_2$ fertilization treated strawberry and those stored in a conventional condition, respectively. The fungal incidence rate of strawberry fruits showed less in $CO_2$ fertilization treatment than control during both MA and conventional storage. These results suggest that $CO_2$ fertilization can improve firmness, increase visual quality after harvest and storage at $8^{\circ}C$, and the MA storage method enhances the shelf-life of 'Maehyang' strawberry fruits.