DOI QR코드

DOI QR Code

Effects of Harvest Time on Growth and Phytochemical Contents of Baby Leaf Vegetables in Multi-layer System

다단재배에서 수확시기가 어린잎 채소의 생육과 항산화물질 함량에 미치는 영향

  • Kim, Jae Kyung (Department of Horticulture Kangwon National University) ;
  • Kang, Ho Min (Department of Horticulture Kangwon National University) ;
  • Kim, Il Seop (Department of Horticulture Kangwon National University) ;
  • Choi, Eun Young (Department of Agricultural Science, Korea National Open University) ;
  • Choi, Ki Yong (Department of Controlled Agriculture Kangwon National University)
  • Received : 2017.05.16
  • Accepted : 2017.07.27
  • Published : 2017.07.31

Abstract

This study aimed to determine the suitable of harvest time on the growth and quality of baby leafy vegetables (Agastsche rugosa O. Kuntze and Lepidium sativum L.) grown on rice seedling tray in a six-layered bench system at 30cm intervals in order to exploit the space during rice growing off-season. Seedlings were grown on the rice seedling tray for 10 days after sowing with coir substrate supplied with nutrient solution at EC $1.5dS{\cdot}m^{-1}$ every 2 days prior to placing the tray on the bench, which were at $1^{st}$ (Low) layer above 20cm and $6^{th}$ (High) layer above 170cm apart from the ground. Growth and phytochemical contents were measured at 7-day and 14-day harvest time. During the culture periods, daily average of integrated solar radiation and temperature were $9.3{\sim}9.6MJ{\cdot}m^{-2}$, $27.5^{\circ}C$ in the High layer and $5.1{\sim}6.2MJ{\cdot}m^{-2}$ in average, and $26.5{\sim}26.6^{\circ}C$ in the Low layer, respectively. For A. rugosa, the highest growth was observed in the Low layer bench at a 14-day harvest time, while their plant height in the High layer was shorter and the leaf number was lower. For L. sativum, the plant height, leaf length and width, leaf number and fresh weight were higher in the Low layer. For A. rugosa, a high yield was observed with the increase in integrated temperature and integrated solar radiation, while a higher yield of L. sativum was found with the increase in integrated temperature, but not with integrated solar radiation. For A. rugosa, both polyphenol and anthocyanin contents were higher in the High layer at a 14-day harvest time. For L. sativum, polyphenol contents were higher in the High layer, whereas no significant difference in anthocyanin and flavonoid contents was observed depending on the layer and harvest time. The highest chlorophyll content showed in Low layer at a 7-day harvest time in both A. rugose and L. sativum. All of the results suggest that in terms of growth and quality, it may be better growing in the high layer for 14 days after seedling in A. rugosa, and low layer for 7 days in L. sativum.

본 실험은 벼 육묘장의 연중 활용을 위해 다단 재배상에서 벼 육묘판을 이용한 어린잎 채소의 적정 수확시기를 구명하고자 다단재배에서 단 위치 및 재배 일수가 생육과 품질에 미치는 영향을 알아보고자 실시되었다. 공시 작물은 배초향(Agastsche rugosa O.)과 큰다닥냉이(Lepidium sativum L.)를 사용하였고, 코코넛코이어로 충진한 벼 육묘판에 각각의 작물을 10일 육묘한 어린잎 채소를 6단 재배상($120{\times}45{\times}180cm$)의 1층 저단(지면으로부터 20cm)과 6층의 고단(지면으로부터 170cm)에 배치하였다. 공급액은 EC $1.5dS{\cdot}m^{-1}$의 배양액과 지하수를 하루간격으로 번갈아 각각 격일로 공급하였고, 하루 3회, 회당 200~400ml/tray씩 두상관수하였다. 7일 또는 14일간 재배하여 수확한 후 생육 및 항산화 함량을 분석하였다. 저단처리와 고단처리에서의 재배 기간 중 일평균 누적광량 및 온도는 $5.1{\sim}6.2MJ{\cdot}m^{-2}$, $26.5{\sim}26.6^{\circ}C$$9.3{\sim}9.6MJ{\cdot}m^{-2}$, $27.5^{\circ}C$로 계측되었다. 배초향의 생육(초장, 엽장, 엽폭, 엽수, 생체중)은 저단에서 14일 재배되었을 때 높았고, 고단에서 재배된 배초향의 초장은 짧고, 엽수가 감소하였다. 큰다닥냉이의 초장, 엽폭, 엽수, 생체중은 저단에서 14일 재배되었을 때 유의적으로 높았으며, 재배일수가 길어졌을 때 엽장, 엽폭, 엽수는 차이가 없었다. 배초향의 수량은 적산온도와 누적광량이 증가함에 따라 증가하였다. 큰다닥냉이의 수량은 적산 온도 증가시 증가한 반면, 누적광량에서는 감소하여 작물간 누적광량에 따른 수량에 차이를 보였다. 배초향의 폴리페놀 및 안토시아닌 함량은 고단에서 높았으며, 재배일수가 길어졌을 때 폴리페놀, 안토시아닌 및 플라보노이드 함량은 증가하였다. 큰다닥냉이의 폴리페놀 함량은 고단처리에서 높았고, 안토시아닌 및 플라보노이드 함량은 다단 위치와 재배일수에 따른 차이가 없었다. 한편 두 작물의 총엽록소 함량은 저단에서 7일 재배하였을 때 가장 높았다. 따라서 고온기 다단 재배 시 생육과 품질을 고려한 어린잎 채소 재배시 육묘 후 배초향은 고단에서 14일, 큰다닥냉이는 저단에서 7일 재배하여 수확하는 것이 좋으리라 판단한다.

Keywords

References

  1. Chang E.H., S.M. Jung, and Y.Y. Hur. 2014. Changes in the aromatic composition of grape cv. Cheongsoo wine depending on the degree of grape ripening. J. Kor. Soc. Food Sci. 23:1761-1771.
  2. Chisari M., A. Todaro, R.N. Barbagallo, and G. Spagna 2010. Salinity effects on enzymatic browning and antioxidant capacity of fresh-cut baby Romaine lettuce (Lactuca sativa L. cv. Duende). Food Chem. 119:1502-1506. https://doi.org/10.1016/j.foodchem.2009.09.033
  3. Choi I.Y., J.S. Moon, C.H. Cho, and Y.J. Song. 2010. Cultivation technique of Agastache rugosa O. Kuntze for high quality herb production. J. Agri. Life Sci. 41:1-7.
  4. Choi K.Y., S.H. Kim, J.K. Kim, H.J. Yoo, and I.S. Kim. 2016. Effect of light control on growth of baby leaf vegetables using rice seedling tray. J. Agri. Life Sci. 28:55-62.
  5. Colonna E., Y. Rouphael, G. Barbieri, and S. De Pascale. 2016. Nutritional quality of ten leafy vegetables harvested at two light Intensities. Food Chem. 199:02-710.
  6. Kim S.J., S.Y. Kim, H.J. Kim, G.J. Bok, S.G. Park, and J.S. Park. 2015. Analysis of antioxidant content and growth of Agastache rugosa as affected by LED lights qualities. J. Kor. Hort. Sci. Technol. 33:133.
  7. Kim S.Y., J.G. Lee, J.G. Kim, J.W. Choi, W.B. Kim, and S.R. Cheong. 2011. Adequate seed quantity and number of supplementary fertilizing for seedling tray cultivation in baby leaf vegetables. J. Kor. Hort. Sci. Technol. 29:64.
  8. Kim W.B., H.J. Jo, J.W. Choi, J.G. Kim, M.H. Park, and S.Y. Kim. 2013. Growth yield of baby vegetables according to night temperatures shading degrees. J. Kor. Hort. Sci. Technol. 31:52. (Abstr.).
  9. Kwack Y., D.S. Kim, and C. Chun. 2015. Growth and quality of baby leaf vegetables hydroponically grown in plant factory as affected by composition of nutrient solution. Protected Horticulture and Plant Factory. 24:271-274. https://doi.org/10.12791/KSBEC.2015.24.4.271
  10. Lee S.Y., M.W. Seo, S.Y. Sim, and S.J. Kim. 2007. Functionality improvement of baby leafy vegetables with complex environmental control. Kor. J. Hort. Sci. Technol. II60 (Abstr.).
  11. Li Q, C. Kubota. 2009. Effects of supplemental light quality on growth and phytochemicals of baby leaf lettuce. Environ. Exp. Bot. 67:59-64. https://doi.org/10.1016/j.envexpbot.2009.06.011
  12. Mackinney G. 1941. Absorption of light by Chlorophyll solution. J. Bio. Che. 140:315-322.
  13. Moreno MIN, M.I. Isla, A.R. Sampietro, and M.A. Vattuone. 2000. Comparison of the free radical scavenging activity of propolis from several regions of Argentina. J. Ethnopharmacol. 71:109-114. https://doi.org/10.1016/S0378-8741(99)00189-0
  14. Noh H.S., J.W. Kim, S.W. Kim, and I.J. Kim. 2013. Proper depth of medium, temperature, light intensity for box-culture in garden cress (Lepidium sativum L.) to be used by baby vegetable. Kor. J. Hort. Sci. Technol. 31:55-56(Abstr.).
  15. Nongmin Press. 2013. http://www.nomgmin.com/article/arprint.htm?arid=212070.
  16. Park H.J., S.H. Kwon, M.S. Lee, G.T. Kim, M.Y. Choi, and W.T. Jung. 2000. Antimicrobial activity of the essential oil of the herbs of Agastache rugosa its composition. J. Kor. Soc. Food Sci. 29:1123-1126.
  17. Park K.W., D.K. Hwang, and H.M. Kang. 2003. Leafy lettuce production using baby vegetable in hydroponic system with non-woven fabric mat. J. Kor. Soc. Hort. Sci. 21:175-180.
  18. Park K.W., H.R. Park, J.P. Beak, J.H. Kim, and D.S. Yang. 2009. Baby vegetable production using plug tray. J. Kor. Hort. Sci. Technol. 27:359-364.
  19. Rural Development Administration(RDA). 2000. Anlaysis of soil and plant. NIAST, Suwon
  20. Rural Development Administration(RDA). 2014. http://www.newswave.kr
  21. Shin S.L., Y.D. Chang, and C.H. Lee. 2009. Comparison for antioxidant activities of sprout vegetables baby leaves on Arctium lappa and Cichorium intybus. J. Kor. Plant Res. 194(Abstr.).
  22. Yoon S.T., I.H. Jeong, Y.J. Kim, T.K. Han, and E.K. Jae. 2015. Response of growth and functional components in baby vegetable as affected by LEDs source and luminous intensity. Kor. J. Organic Agri. Vol. 23. 3:49-565.