• Title/Summary/Keyword: Control-noise Interaction

Search Result 97, Processing Time 0.024 seconds

Vortex-induced vibration of a long flexible cylinder in uniform cross-flow

  • Ji, Chunning;Peng, Ziteng;Alam, Md. Mahbub;Chen, Weilin;Xu, Dong
    • Wind and Structures
    • /
    • v.26 no.5
    • /
    • pp.267-277
    • /
    • 2018
  • Numerical simulations are performed of a long flexible cylinder undergoing vortex-induced vibration at a Reynolds number of 500. The cylinder is pinned at both ends, having an aspect ratio of 100 (cylinder length to cylinder diameter) and a mass ratio of 4.2 (structural mass to displaced fluid mass). Temporal and spatial information on the cross-flow (CF) and in-line (IL) vibrations is extracted. High modal vibrations up to the $6^{th}$ in the CF direction and the $11^{th}$ in the IL direction are observed. Both the CF and IL vibrations feature a multi-mode mixed pattern. Mode competition is observed. The $2^{nd}$ mode with a low frequency dominates the IL vibration and its existence is attributed to a wave group propagating back and forth along the span. Distributions of fluid force coefficients are correlated to those of the CF and IL vibrations along the span. Histograms of the x'-y motion phase difference are evaluated from the total simulation time and a complete vibration cycle representing the standing or travelling wave pattern. Correlations between the phase difference and the vibrations are discussed. Vortex structures behind the cylinder show an interwoven near-wake pattern when the standing wave pattern dominates, but an oblique near-wake pattern when the travelling wave pattern prevails.

Flow structures around rectangular cylinder in the vicinity of a wall

  • Derakhshandeh, J.F.;Alam, Md. Mahbub
    • Wind and Structures
    • /
    • v.26 no.5
    • /
    • pp.293-304
    • /
    • 2018
  • A numerical study is conducted on the flow characteristics of a rectangular cylinder (chord-to-width ratio C/W = 2 - 10) mounted close to a rigid wall at gap-to-width ratios G/W = 0.25 - 6.25. The effects of G/W and C/W on the Strouhal number, vortex structure, and time-mean drag and lift forces are examined. The results reveal that both G/W and C/W have strong influences on vortex structure, which significantly affects the forces on the cylinder. An increase in G/W leads to four different flow regimes, namely no vortex street flow (G/W < 0.75), single-row vortex street flow ($0.75{\leq}G/W{\leq}1.25$), inverted two-row vortex street flow ($1.25<G/W{\leq}2.5$), and two-row vortex street flow (G/W > 2.5). Both Strouhal number and time-mean drag are more sensitive to C/W than to G/W. For a given G/W, Strouhal number grows with C/W while time-mean drag decays with C/W, the growth and decay being large between C/W = 2 and 4. The time-mean drag is largest in the single-row vortex street regime, contributed by a large pressure on the front surface, regardless of C/W. A higher C/W, in general, leads to a higher time-mean lift. The maximum time-mean lift occurs for C/W = 10 at G/W = 0.75, while the minimum time-mean lift appears for C/W = 2 at the same G/W. The impact of C/W on the time-mean lift is more substantial in single-row vortex regime. The effect of G/W on the time-mean lift is larger at a larger C/W.

DNS of vortex-induced vibrations of a yawed flexible cylinder near a plane boundary

  • Zhang, Zhimeng;Ji, Chunning;Alam, Md. Mahbub;Xu, Dong
    • Wind and Structures
    • /
    • v.30 no.5
    • /
    • pp.465-474
    • /
    • 2020
  • Vortex-induced vibrations of a yawed flexible cylinder near a plane boundary are numerically investigated at a Reynolds number Ren= 500 based on normal component of freestream velocity. Free to oscillate in the in-line and cross-flow directions, the cylinder with an aspect ratio of 25 is pinned-pinned at both ends at a fixed wall-cylinder gap ratio G/D = 0.8, where D is the cylinder diameter. The cylinder yaw angle (α) is varied from 0° to 60° with an increment of 15°. The main focus is given on the influence of α on structural vibrations, flow patterns, hydrodynamic forces, and IP (Independence Principle) validity. The vortex shedding pattern, contingent on α, is parallel at α=0°, negatively-yawed at α ≤ 15° and positively-yawed at α ≥ 30°. In the negatively- and positively-yawed vortex shedding patterns, the inclination direction of the spanwise vortex rows is in the opposite and same directions of α, respectively. Both in-line and cross-flow vibration amplitudes are symmetric to the midspan, regardless of α. The RMS lift coefficient CL,rms exhibits asymmetry along the span when α ≠ 0°, maximum CL,rms occurring on the lower and upper halves of the cylinder for negatively- and positively-yawed vortex shedding patterns, respectively. The IP is well followed in predicting the vibration amplitudes and drag forces for α ≤ 45° while invalid in predicting lift forces for α ≥ 30°. The vortex-shedding frequency and the vibration frequency are well predicted for α = 0° - 60° examined.

Flow interference between two tripped cylinders

  • Alam, Md. Mahbub;Kim, Sangil;Maiti, Dilip Kumar
    • Wind and Structures
    • /
    • v.23 no.2
    • /
    • pp.109-125
    • /
    • 2016
  • Flow interference is investigated between two tripped cylinders of identical diameter D at stagger angle ${\alpha}=0^{\circ}{\sim}180^{\circ}$ and gap spacing ratio $P^*$ (= P/D) = 0.1 ~ 5, where ${\alpha}$ is the angle between the freestream velocity and the line connecting the cylinder centers, and P is the gap width between the cylinders. Two tripwires, each of diameter 0.1D, were attached on each cylinder at azimuthal angle ${\beta}={\pm}30^{\circ}$, respectively. Time-mean drag coefficient ($C_D$) and fluctuating drag ($C_{Df}$) and lift ($C_{Lf}$) coefficients on the two tripped cylinders were measured and compared with those on plain cylinders. We also conducted surface pressure measurements to assimilate the fluid dynamics around the cylinders. $C_D$, $C_{Df}$ and $C_{Lf}$ all for the plain cylinders are strong function of ${\alpha}$ and $P^*$ due to strong mutual interference between the cylinders, connected to six interactions (Alam and Meyer 2011), namely boundary layer and cylinder, shear-layer/wake and cylinder, shear layer and shear layer, vortex and cylinder, vortex and shear layer, and vortex and vortex interactions. $C_D$, $C_{Df}$ and $C_{Lf}$ are very large for vortex and cylinder, vortex and shear layer, and vortex and vortex interactions, i.e., the interactions where vortex is involved. On the other hand, the interference as well as the strong interactions involving vortices is suppressed for the tripped cylinders, resulting in insignificant variations in $C_D$, $C_{Df}$ and $C_{Lf}$ with ${\alpha}$ and $P^*$. In most of the (${\alpha}$, $P^*$ ) region, the suppressions in $C_D$, $C_{Df}$ and $C_{Lf}$ are about 58%, 65% and 85%, respectively, with maximum suppressions 60%, 80% and 90%.

An Analysis of Human Gesture Recognition Technologies for Electronic Device Control (전자 기기 조종을 위한 인간 동작 인식 기술 분석)

  • Choi, Min-Seok;Jang, Beakcheol
    • Journal of the Korea Society of Computer and Information
    • /
    • v.19 no.12
    • /
    • pp.91-100
    • /
    • 2014
  • In this paper, we categorize existing human gesture recognition technologies to camera-based, additional hardware-based and frequency-based technologies. Then we describe several representative techniques for each of them, emphasizing their strengths and weaknesses. We define important performance issues for human gesture recognition technologies and analyze recent technologies according to the performance issues. Our analyses show that camera-based technologies are easy to use and have high accuracy, but they have limitations on recognition ranges and need additional costs for their devices. Additional hardware-based technologies are not limited by recognition ranges and not affected by light or noise, but they have the disadvantage that human must wear or carry additional devices and need additional costs for their devices. Finally, frequency-based technologies are not limited by recognition ranges, and they do not need additional devices. However, they have not commercialized yet, and their accuracies can be deteriorated by other frequencies and signals.

An Implementation of Brain-wave DB building system for Artifacts prevention using Face Tracking (얼굴 추적 기반의 잡파 혼입 방지가 가능한 뇌파 DB구축 시스템 구현)

  • Shin, Jeong-Hoon;Kwon, Hyeong-Oh
    • Journal of the Institute of Convergence Signal Processing
    • /
    • v.10 no.1
    • /
    • pp.40-48
    • /
    • 2009
  • Leading of the computer, IT technology has make great strides. As a information-industry-community was highly developed, user's needs to convenience about intelligence and humanization of interface is being increase today. Nowadays, researches with are related to BCI are progress put the application-technology development first in importance eliminating research about fountainhead technology with DB construction. These problems are due to a BCI-related research studies have not overcome the initial level, and not toward a systematic study. Brain wave are collected from subjects is a signal that the signal is appropriate and necessary in the experiment is difficult to distinguish. In addition, brain wave that it's not necessary to collect the experiment, serious eyes flicker, facial and body movements of an EMG and electrodes attached to the state, noise, vibration, etc. It is hard to collect accurate brain wave was caused by mixing disturbance wave in experiment on the environment. This movement, and the experiment of subject impact on the environment due to the mixing disturbance wave can cause that lowering cognitive and decline of efficiency when embodied BCI system. Therefore, in this paper, we propose an accurate and efficient brain-wave DB building system that more exactness and cognitive basis studies when embodied BCI system with brain-wave. For the minimize about brain wave DB with mixing disturbance, we propose a DB building method using an automatic control and prevent unnecessary action, put to use the subjects face tracking.

  • PDF

The Intelligent Determination Model of Audience Emotion for Implementing Personalized Exhibition (개인화 전시 서비스 구현을 위한 지능형 관객 감정 판단 모형)

  • Jung, Min-Kyu;Kim, Jae-Kyeong
    • Journal of Intelligence and Information Systems
    • /
    • v.18 no.1
    • /
    • pp.39-57
    • /
    • 2012
  • Recently, due to the introduction of high-tech equipment in interactive exhibits, many people's attention has been concentrated on Interactive exhibits that can double the exhibition effect through the interaction with the audience. In addition, it is also possible to measure a variety of audience reaction in the interactive exhibition. Among various audience reactions, this research uses the change of the facial features that can be collected in an interactive exhibition space. This research develops an artificial neural network-based prediction model to predict the response of the audience by measuring the change of the facial features when the audience is given stimulation from the non-excited state. To present the emotion state of the audience, this research uses a Valence-Arousal model. So, this research suggests an overall framework composed of the following six steps. The first step is a step of collecting data for modeling. The data was collected from people participated in the 2012 Seoul DMC Culture Open, and the collected data was used for the experiments. The second step extracts 64 facial features from the collected data and compensates the facial feature values. The third step generates independent and dependent variables of an artificial neural network model. The fourth step extracts the independent variable that affects the dependent variable using the statistical technique. The fifth step builds an artificial neural network model and performs a learning process using train set and test set. Finally the last sixth step is to validate the prediction performance of artificial neural network model using the validation data set. The proposed model is compared with statistical predictive model to see whether it had better performance or not. As a result, although the data set in this experiment had much noise, the proposed model showed better results when the model was compared with multiple regression analysis model. If the prediction model of audience reaction was used in the real exhibition, it will be able to provide countermeasures and services appropriate to the audience's reaction viewing the exhibits. Specifically, if the arousal of audience about Exhibits is low, Action to increase arousal of the audience will be taken. For instance, we recommend the audience another preferred contents or using a light or sound to focus on these exhibits. In other words, when planning future exhibitions, planning the exhibition to satisfy various audience preferences would be possible. And it is expected to foster a personalized environment to concentrate on the exhibits. But, the proposed model in this research still shows the low prediction accuracy. The cause is in some parts as follows : First, the data covers diverse visitors of real exhibitions, so it was difficult to control the optimized experimental environment. So, the collected data has much noise, and it would results a lower accuracy. In further research, the data collection will be conducted in a more optimized experimental environment. The further research to increase the accuracy of the predictions of the model will be conducted. Second, using changes of facial expression only is thought to be not enough to extract audience emotions. If facial expression is combined with other responses, such as the sound, audience behavior, it would result a better result.