• Title/Summary/Keyword: Control technique

Search Result 8,519, Processing Time 0.036 seconds

A new Instantaneous Torque Control of PM Synchronous Motor for High Performance Direct Drive Systems

  • Chung, Se-Kyo;Kim, Hyun-Soo;Kim, Chang-Gyun;Youn, Myung-Joong
    • Proceedings of the KIPE Conference
    • /
    • 1996.06a
    • /
    • pp.13-16
    • /
    • 1996
  • A new instantaneous torque control technique is presented for a high performance control of a permanent magnet synchronous motor. Using the model reference adaptive system technique, the linkage flux of the motor is estimated and the torque is instantaneously controlled by the proposed torque controller combining with a variable structure control and space vector PWM. The proposed torque control provides the advantage of reducing the torque pulsation caused by the flux harmonics. This control strategy is applied to the high torque PM synchronous motor drives for direct drive systems and is implemented by using a software of the DSP TMS320C30. The experiments are carried out for this system and the results well demonstrate the effectiveness of the proposed control.

  • PDF

Dialogical tuning of the sampling period in fuzzy control systems

  • Oura, Kunihiko;Ishimoto, Tsutomu;Akizuki, Kageo;Ishimaru, Naoyuki
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1993.10b
    • /
    • pp.385-390
    • /
    • 1993
  • It is the purpose of this paper to present a dialogical tuning method of the sampling period in fuzzy control systems. Last year, the authors gave a dialogical tuning technique of fuzzy control system under the fixed sampling period in this symposium. In the case where sampling period is chosen larger, the response of the control system is unsatisfactory, and in the case where the sampling period is smaller, ineffective control actions are repeated. The appropriate sampling period is chosen through the step response of the closed loop fuzzy control process. As the tuning technique depends on the controlled plant, it is necessary to estimate the rough characteristics of it. The authors propose a method to decide th appropriate sampling period, by inspecting the characteristics of the plant.

  • PDF

Neural Network Compensation Technique for Standard PD-Like Fuzzy Controlled Nonlinear Systems

  • Song, Deok-Hee;Lee, Geun-Hyeong;Jung, Seul
    • International Journal of Fuzzy Logic and Intelligent Systems
    • /
    • v.8 no.1
    • /
    • pp.68-74
    • /
    • 2008
  • In this paper, a novel neural fuzzy control method is proposed to control nonlinear systems. A standard PD-like fuzzy controller is designed and used as a main controller for the system. Then a neural network controller is added to the reference trajectories to form a neural-fuzzy control structure and used to compensate for nonlinear effects. Two neural-fuzzy control schemes based on two well-known neural network control schemes, the feedback error learning scheme and the reference compensation technique scheme as well as the standard PD-like fuzzy control are studied. Those schemes are tested to control the angle and the position of the inverted pendulum and their performances are compared.

Motion Analysis of Inchworm using Robust control and Input shaping (강인제어와 입력성형 기법을 이용한 이송 자벌레의 운동 해석)

  • Yang, Kwang-Yong;Hwang, Yun-Sik;Kim, Yeung-Shik;Kim, In-Soo
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2008.11a
    • /
    • pp.195-200
    • /
    • 2008
  • This paper presents motion control of the Inchworm composed of the piezoelectric actuators and mechanical elements. Piezoelectric actuator shows nonlinear response characteristics including hysteresis due to the ferroelectric characteristics. This paper proposes feedback control scheme to improve the ability of tracking response to complex input signal and suppress the phenomenon of hysteresis using the sliding mode control technique with the integrator. The sliding mode control system has the limit to minimize both the settle time and overshoot. For making up this limit, this paper also suggests input shaping technique suitable to the inchworm control system.

  • PDF

Speed Estimation and Control of IPMSM using HAI Control (HAI 제어를 이용한 IPMSM의 속도 추정 및 제어)

  • Lee, Jung-Chul;Lee, Hong-Gyun;Lee, Young-Sil;Nam, Su-Myeong;Chung, Dong-Hwa
    • Proceedings of the KIEE Conference
    • /
    • 2004.10a
    • /
    • pp.176-178
    • /
    • 2004
  • Precise control of interior permanent magnet synchronous motor(IPMSM) over wide speed range is an engineering challenge. This paper considers the design and implementation of novel technique of speed estimation and control for IPMSM using hybrid intelligent control. The hybrid combination of neural network and adaptive fuzzy control will produce a powerful representation flexibility and numerical processing capability. Also, this paper is proposed speed control of IPMSM using adaptive neural network fuzzy(A-NNF) and estimation of speed using artificial neural network(ANN) controller. The back propagation neural network technique is used to provide a real time adaptive estimation of the motor speed.

  • PDF

Robust Nonlinear Control of Air-to-Fuel Ratio in Spark Ignition Engines

  • Myoungho Sunwoo;Paljoo Yoon;Park, Seungbum;Lee, Wootaik
    • Journal of Mechanical Science and Technology
    • /
    • v.15 no.6
    • /
    • pp.699-708
    • /
    • 2001
  • This paper presents a new approach to the AFR (Air-to-Fuel Ratio) control problem, which is based on the wide-band oxygen sensor output. The dedicated nonlinear controller is based on the feedback lineaization technique. It is well known that the feedback linearizing control technique requires an exact model of the plant for the cancellation of plant nonlinearities. A sliding mode control scheme is applied which can effectively compensate the modeling uncertainties. The measurement time delay of an oxygen sensor limits the gain of the feedback controller. Hence, time delay compensation procedure is necessary for the improvement of control performance. The Smith predictor is adopted to compensate the effects of time delay. The simulation and experimental results show that the proposed controllers can effectively reduce the transient peaks of AFR in spite of fast tip-in and tip-out maneuvers of the throttle.

  • PDF

Design and Application of a New Sliding Mode Controller with Disturbance Estimator

  • Park, Seung-Bok;Ham, Joon-Ho;Park, Jong-Sung
    • International Journal of Precision Engineering and Manufacturing
    • /
    • v.3 no.4
    • /
    • pp.94-100
    • /
    • 2002
  • The conventional sliding mode control (SMC) technique requires a priori knowledge of the upperbounds of disturbances and/or modeling uncertainties to assure robustness. This, however, may not be easy to obtain in practical situation. This paper presents a new methodology, a sliding mode control with disturbance estimator (SMCDE), which offers a robust control performance without a priori knowledge about the disturbance. The proposed technique is featured by an average value of the imposed disturbance over a certain period. A nonlinear spring-mass-damper system and a two-link robot system are adopted as illustrative application examples. Control performances such as estimation error and tracking error are compared between the proposed methodology and conventional scheme.

Nonlinear Nutation Control of Spacecraft Using Two Momentum Wheels

  • Seo, In Ho;Kim, Jong Myeong;Leeghim, Henzeh
    • International Journal of Aeronautical and Space Sciences
    • /
    • v.18 no.1
    • /
    • pp.99-107
    • /
    • 2017
  • In this work, the nutation control of rigid spacecraft with only two momentum wheels is addressed by applying the feedback linearization technique. In this strategy, the primary performance index is to regulate the nutational angle by the momentum control of wheels. The spacecraft attitude equations of motion are transformed to a general linearized form by feedback linearization technique, including a guaranteed control law promising the internal dynamics stability to accomplish the nutation angle small. It is proven that the configuration of inertia properties plays a key role in analyzing spacecraft energy level. The behavior of the momentum wheels is also studied analytically and numerically. Finally, the effectiveness of the proposed nonlinear control law for the momentum transfer is verified by conducting numerical simulations.

A Study on Simple Adaptive Control of Flexible-Joint Robots Considering Motor Dynamics (모터 동역학식을 고려한 유연 연결 로봇의 간단한 적응 제어에 관한 연구)

  • Yoo, Sung-Jin;Choi, Yoon-Ho;Park, Jin-Bae
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.14 no.11
    • /
    • pp.1103-1109
    • /
    • 2008
  • Since the flexible joint robots with motor dynamics are represented by the fifth-order nonlinear sγstem, it is difficult and complex to design the controller for electrically driven flexible-joint (EDFJ) robots. In this paper, we propose a simple adaptive control method to solve this problem. It is assumed that the model uncertainties of the robots dynamics, joint flexibility, and motor dynamics are unknown. For the simple control design, the dynamic surface design method is applied, and all uncertainties in the robot and motor dynamics are compensated by using the adaptive function approximation technique. It is proved that all signals in the controlled closed-loop system are uniformly ultimately bounded. Simulation results for three-link EDFJ manipulators are provided to validate the effectiveness of the proposed control system.

Performance Improvement of Organic Thin Film Transistors with Self-Assembled Monolayer Formed by ALD

  • Kim, Hyun-Suck;Park, Jae-Hoon;Bong, Kang-Wook;Kang, Jong-Mook;Kim, Hye-Min;Choi, Jong-Sun
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2006.08a
    • /
    • pp.1166-1169
    • /
    • 2006
  • In this study, the effects of SAMs on the performance of OTFTs have been investigated. ALD technique was applied for the deposition of SAMs, which is an ultra-thin film deposition technique based on sequences of self-limiting surface reactions enabling thickness control on atomic scale. According to our investigation results, it is observed that the surface properties of the gate insulator was changed by SAMs, which allow pentacene molecules to be deposited in the upright direction on the gate insulator and hence the performance of OTFTs could be improved. These results will be discussed

  • PDF