• Title/Summary/Keyword: Control technique

Search Result 8,482, Processing Time 0.039 seconds

Optimal Speed Control of Hybrid Electric Vehicles

  • Yadav, Anil Kumar;Gaur, Prerna;Jha, Shyama Kant;Gupta, J.R.P.;Mittal, A.P.
    • Journal of Power Electronics
    • /
    • v.11 no.4
    • /
    • pp.393-400
    • /
    • 2011
  • The main objective of this paper is to control the speed of Nonlinear Hybrid Electric Vehicle (HEV) by controlling the throttle position. Various control techniques such as well known Proportional-Integral-Derivative (PID) controller in conjunction with state feedback controller (SFC) such as Pole Placement Technique (PPT), Observer Based Controller (OBC) and Linear Quadratic Regulator (LQR) Controller are designed. Some Intelligent control techniques e.g. fuzzy logic PD, Fuzzy logic PI along with Adaptive Controller such as Self Organizing Controller (SOC) is also designed. The design objective in this research paper is to provide smooth throttle movement, zero steady-state speed error, and to maintain a Selected Vehicle (SV) speed. A comparative study is carried out in order to identify the superiority of optimal control technique so as to get improved fuel economy, reduced pollution, improved driving safety and reduced manufacturing costs.

Generating 3-D Models of Human Motions by Motion Capture

  • Yamaguchi, I.;Tou, K.;Tan, J.K.;Ishikawa, S.;Naito, T.;Yokota, M.
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2003.10a
    • /
    • pp.1629-1632
    • /
    • 2003
  • A technique is presented for generating a compound human motion from its primitive motions obtained by a motion capture system. Some human fundamental motions are modeled in a 3-D way and registered as primitive motions. Because the factorization method is used for the motion capture, calibration of video cameras and connection of the motion in the direction of time is both unnecessary. Employing these motions, various compound human motions are generated by connecting the motions after having applied rotation and parallel transformation to them. Linear interpolation is done at the discontinuous boundary between primitive motions and smooth connection is achieved. Experimental results show satisfactory performance of the proposed technique. The technique may contribute to producing various complicated human motions without much effort using a strict motion capture system.

  • PDF

Ripple Free Multirate Controller Design Using Lifting Technique (리프팅 기법을 이용한 리플 제거 멀티레이트 제어기 설계)

  • Jeong, Dong-Seul;Cho, Kyu-Nam;Chung, Chung-Choo
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.13 no.11
    • /
    • pp.1040-1047
    • /
    • 2007
  • This paper presents ripple-free method that can occur in multirate controller design. The conventional multirate input controller has the problem that the ripple occurs in track-following because of chattering phenomenon in control input signal. In order to resolve the problem of rippling, it was proposed to eliminate the ripple phenomenon using feedforward compensator. This paper makes explains problems in conventional ripple-tree multirate controller and introduces a multirate controller design method applying lifting technique based on current estimators in condition space. Using the ripple-tree multirate controller, we show that chattering does not occur in the control input signal through applying the final value theorem from the viewpoint of discrete-time transformation. Also, this study proves that the ripple of the proposed controller decreases with the increase of this sampling frequency and, when sampling frequency is fixed, it decreases with the increase of the control input period.

Development and Performance Evaluation of a Concurrency Control Technique in Object-Oriented Database Systems

  • Jun, Woochun;Hong, Suk-Ki
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.12 no.4
    • /
    • pp.1899-1911
    • /
    • 2018
  • In this work, we propose a concurrency control scheme in object-oriented database (OODB). Since an OODB provides complex modeling power than the conventional relational databases, a concurrency control technique in OODB is also rather complicated and has influence on the overall performance. Thus, it is very important to develop a concurrency control technique with less overhead. The proposed scheme deals with class hierarchy that is a key concept in OODBs. The proposed scheme is developed on implicit locking scheme. Also, the proposed scheme is designed using data access frequency in order to reduce locking overhead than implicit locking. It means that, if access frequency information is not available, the proposed scheme works just like the existing implicit locking, In our work, the correctness of the proposed scheme is proved. The performance is analyzed depending on access types. Also, it is proved that our scheme performs works much better than the implicit locking does.

Direct Digital Control of the Phase-Controlled Rectifier (위상제어정류기의 직접 디지털 제어)

  • 송의호;권봉환
    • The Transactions of the Korean Institute of Electrical Engineers
    • /
    • v.40 no.1
    • /
    • pp.31-38
    • /
    • 1991
  • A direct digital control technique of a current source using the phase-controlled rectifier is presented. A digital firing technique without sensing the line voltage is proposed. This scheme generates firing pulses directly from error signal between command and output voltage. Thus the phase detection transformers filters and zero-crossing detector are unnecessary. The synchronism is modeled and analized. Also a software synchronization algorithm is presented without a look up table and controls the system in real time with fast dynamic characteristics. Using the single-chip microprocessor 8097BH, the direct digital control is implemented with minimal hardware structure. Using the time-weighted performance index, the optimal discrete IPM control technique is also proposed to control the current of the PCR.

  • PDF

Design of Sliding Mode Controller with New Perturbation Estimator (새로운 섭동 추정기를 갖는 슬라이딩 모드 제어기의 설계)

  • Ham, Joon-Ho;Choi, Seung-Bok
    • Proceedings of the KSME Conference
    • /
    • 2004.11a
    • /
    • pp.782-787
    • /
    • 2004
  • In the conventional sliding mode control technique, a priori knowledge of the bound of external disturbances or/and parameter uncertainties is required to assure control robustness. This, however, may not be easy to obtain in practical situation. This work presents a novel methodology, a sliding mode controller with perturbation estimator, which offers a robust control performance without a priori knowledge about the perturbations (disturbances and parameter uncertainties). The proposed technique is featured by an integrated average value of the imposed perturbation over a certain sampling period. This work also proposes two effective actuating methods of the perturbation estimator: on-off condition and filtering condition. In order to demonstrate the effectiveness of the proposed methodology, a two-link robotic system is adopted and its position control performance is evaluated. In addition, a comparative work between the conventional technique and the proposed one is undertaken.

  • PDF

Modeling and Vibration Control of the Precision Positioning Stage with Flexible Hinge Mechanism (유연힌지형 정밀스테이지의 모델링 및 진동제어)

  • Kim, J.I.;Hwang, Y.S.;Kim, Y.S.; Kim, I.S.; Kim, K.B.
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2009.04a
    • /
    • pp.239-244
    • /
    • 2009
  • This paper suggests a precision positioning control technique of a precision positioning stage with coupling effects. The precision positioning stage is supported by four flexible spring hinges and driven by two piezoelectric actuators. The dynamic characteristics of the precision positioning stage is modeled and identified by the FEM analysis. The dynamic characteristics of the stage are also identified by the frequency domain modeling technique based on the experimental data. Reliability of two modeling methods is examined by comparing the numerically and experimentally produced responses of the stage. This paper proposes a sliding mode control technique with integrator to improve the tracking ability of the precision positioning stage to the complex input signal using. To demonstrate the effectiveness of the proposed modeling schemes and control algorithm, experiment validations are performed.

  • PDF

An Adaptive Tracking Controller for Vibration Reduction of Flexible Manipulator

  • Sung Yoon-Gyeoung;Lee Kyu-Tae
    • International Journal of Precision Engineering and Manufacturing
    • /
    • v.7 no.3
    • /
    • pp.51-55
    • /
    • 2006
  • An adaptive tracking controller is presented for the vibration reduction of flexible manipulator employed in hazardous area by combining input shaping technique with sliding-mode control. The combined approach appears to be robust in the presence of severe disturbance and unknown parameter which will be estimated by least-square method in real time. In a maneuver strategy, it is found that a hybrid trajectory with a combination of low frequency mode and rigid-body mode results in better performance and is more efficient than the traditional rigid body trajectory alone which many researchers have employed. The feasibility of the adaptive tracking control approach is demonstrated by applying it to the simplified model of robot system. For the applications of the proposed technique to realistic systems, several requirements are discussed such as control stability and large system order resulted from finite element modeling.

An Efficient Horizontal Maintenance Technique for the Mobile Inverted Pendulum (모바일 역진자의 효율적 수평유지 기법)

  • Yun, Jae-Mu;Lee, Jae-Kyoung;Lee, Jang-Myung
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.13 no.7
    • /
    • pp.656-663
    • /
    • 2007
  • A new dynamic balancing algorithm has been proposed to minimize the number of sensors necessary for the horizontal balancing of the mobile inverted pendulum while maintaining the same level of the commercial performance. The inverted pendulum technique is getting attention and there have been many researches on the Segway since the US inventor Dean Kamen commercialized. One of the major problems of the Segway is that many sensors are required for the control of the Segway, which results in the high price. In this research, a single gyro and a tilt sensor are fused to obtain the absolute tilt information, which is applied for the control of the mobile inverted pendulum. A dynamic balancing technique has been developed and applied for a robust control system against disturbances. The intelligent handling and stable curving of the Segway as a next generation mobile tool are verified with a human loading.

Characteristics of a Sliding Mode Controller with Disturbance Estimator (외란 추정기를 갖는 슬라이딩 모드 제어기의 특성)

  • Choe, Seung-Bok;Ham, Jun-Ho;Park, Jong-Seong
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.19 no.1
    • /
    • pp.165-171
    • /
    • 2002
  • The conventional sliding mode control(SMC) technique requires a priori knowledge of the upperbounds of disturbances or/and modeling uncertainties to assure robustness. This, however, may not to be easy to obtain in practical situation. This paper presents a new methodology, sliding mode control with disturbance estimator(SMCDE), which offers a robust control performance without a priori knowledge about the disturbance. The proposed technique is featured by an average value of the imposed disturbance over a certain period. A nonlinear spring-mass-damper system is adopted as an illustrative example, and a comparative work between the conventional technique and the present one is undertaken.