• Title/Summary/Keyword: Control packet

Search Result 1,137, Processing Time 0.028 seconds

A Construction and Operation Analysis of Group Management Network about Control Devices based on CIM Level 3 (CIM 계층 3에서 제어 기기들의 그룹 관리 네트워크 구축과 운영 해석)

  • 김정호
    • The Journal of Society for e-Business Studies
    • /
    • v.4 no.1
    • /
    • pp.87-101
    • /
    • 1999
  • To operate the automatic devices of manufacturing process more effectively and to solve the needs of the resource sharing, network technology is applied to the control devices located in common manufacturing zone and operated by connecting them. In this paper, functional standard of the network layers are set as physical and data link layer of IEEE 802.2, 802.4, and VMD application layer and ISO-CIM reference model. Then, they are divided as minimized architecture, designed as group objects which perform group management and service objects which organizes and operates the group. For the stability in this network, this paper measures the variation of data packet length and node number and analyzes the variated value of the waiting time for the network operation. For the method of the analysis, non-exhausted service method are selected, and the arrival rates of the each data packet to the nodes that are assumed to form a Poission distribution. Then, queue model is set as M/G/1, and the analysis equation for waiting time is found. For the evalution of the performance, the length of the data packet varies from 10 bytes to 100 bytes in the operation of the group management network, the variation of the wating time is less than 10 msec. Since the waiting time in this case is less than 10 msec, response time is fast enough. Furthermore, to evaluate the real time processing of the group management network, it shows if the number of nodes is less than 40, and the average arrival time is less than 40 packet/sec, it can perform stable operation even taking the overhead such as software delay time, indicated packet service, and transmissin safety margin.

  • PDF

Packet Drop Technique for Differentiated Services in Wired Ship Area Networks (선박 내 유선망에서 차등화 서비스 지원을 위한 패킷 폐기 기술)

  • Lee, Seong Ro;Kwon, Jang-Woo;Jeong, Min-A;Hur, Kyeong
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.39C no.11
    • /
    • pp.1177-1184
    • /
    • 2014
  • An wired ship area network has functionality of remote control and autonomous management of various sensors and instruments embedded or boarded in a ship. For such environment, the DiffServ (Differentiated Services) realizes that the high-speed real-time flow with the higher priority has the guaranteed minimum data rate and is delivered faster. As a result of this DiffServ effect, the intelligent Ship Area Networks can be implemented. In this paper, an packet drop technique is proposed to outperform the previous RIO (RED In and Out) drop mechanism for DiffServ in ship area networks. the proposed packet drop technique does not manage the individual flows and divides them into several flow groups according to a criterion. And it guarantees the fairness between individual flows in the same QoS class through the group-based control. In simulation results of the proposed packet drop technique, the link utilization decreases than RIO. But it guarantees more data rates to DiffServ flows passing multiple bottleneck links.

Analysis of Adaptive Cycle Packet Drop and Non-Adaptive Cycle Packet Drop for Congestion Control in Internet (인터넷에서 혼잡제어를 위한 적응적 사이클 패킷 폐기 기법과 비적응적 사이클 패킷 폐기 기법의 분석)

  • Kim, Su-Yeon;Kahng, Hyun-Kook
    • The KIPS Transactions:PartC
    • /
    • v.9C no.5
    • /
    • pp.783-788
    • /
    • 2002
  • Adaptive Cyclic Packet Dropping algorithm (ACPD), and Non-adaptive Cyclic Packet Dropping algorithm (NCPD) are applying stricter drop precedence than that of RIO algorithm. Especially, the ACPD algorithm drops adaptively packets for the congestion control, as predicting traffic pattern between each cycle. Therefore the ACPD algorithm makes up for the drawback of RIO algorithm and minimizes the wastes of the bandwidth being capable of predicting in the NCPD algorithm. And we executed a simulation and analyzed the throughput and packet drop rate based on Sending Priority changing dynamically depending on network traffic. In this algorithm, applying strict drop precedence policy, we get better performance on priority levels. The results show that the proposed algorithms may provide more efficient and stricter drop precedence policy as compared to RIO independent of traffic load. The ACPD algorithm can provide better performance on priority levels and keep stricter drop policy than RIO and the NCPD algorithm.

A Feedback Control Model for ABR Traffic with Long Delays (긴 지연시간을 갖는 ABR 트래픽에 대한 피드백제어 모델)

  • O, Chang-Yun;Bae, Sang-Hyeon
    • The Transactions of the Korea Information Processing Society
    • /
    • v.7 no.4
    • /
    • pp.1211-1216
    • /
    • 2000
  • Asynchronous transfer mode (ATM) can be efficiently used to transport packet data services. The switching system will support voice and packet data services simultaneously from end to end applications. To guarantee quality of service (QoS) of the offered services, source rateot send packet data is needed to control the network overload condition. Most existing control algorithms are shown to provide the threshold-based feedback control technique. However, real-time voice calls can be dynamically connected and released during data services in the network. If the feedback control information delays, quality of the serviced voice can be degraded due to a time delay between source and destination in the high speed link. An adaptive algorithm based on the optimal least mean square error technique is presented for the predictive feedback control technique. The algorithm attempts to predict a future buffer size from weight (slope) adaptation of unknown functions, which are used fro feedback control. Simulation results are presented, which show the effectiveness of the algorithm.

  • PDF

Advanced n based Packet Marking Mechanism for IP Traceback (TTL 기반 패킷 마킹 방식을 적용한 IP 패킷 역추적 기법)

  • Lee Hyung-Woo
    • Journal of Internet Computing and Services
    • /
    • v.6 no.1
    • /
    • pp.13-25
    • /
    • 2005
  • Distributed Denial-of-Service(DDoS) attack prevent users from accessing services on the target network by spoofing its origin source address with a large volume of traffic. The objective of IP Traceback is to determine the real attack sources, as well as the full path taken by the attack packets. Existing IP Traceback methods can be categorized as proactive or reactive tracing. Existing PPM based tracing scheme(such as router node appending, sampling and edge sampling) insert traceback information in IP packet header for IP Traceback. But, these schemes did not provide enhanced performance in DDoS attack. In this paper, we propose a 'TTL based advanced Packet Marking' mechanism for IP Traceback. Proposed mechanism can detect and control DDoS traffic on router and can generate marked packet for reconstructing origin DDoS attack source, by which we can diminish network overload and enhance traceback performance.

  • PDF

Modified BLUE Packet Buffer for Base-Stations in Mobile IP-based Networks

  • Hur, Kyeong
    • Journal of information and communication convergence engineering
    • /
    • v.9 no.5
    • /
    • pp.530-538
    • /
    • 2011
  • Performance of TCP can be severely degraded in Mobile IP-based wireless networks where packet losses not related to network congestion occur frequently during inter-subnetwork handoffs by user mobility. To solve such a problem in the networks using Mobile IP, the packet buffering method at a base station(BS) recovers those packets dropped during handoff by forwarding the buffered packets at the old BS to the mobile users. But, when the mobile user moves to a congested BS in a new foreign subnetwork, those buffered packets forwarded by the old BS are dropped and TCP transmission performance of a mobile user degrades severely. In this paper, we propose a Modified BLUE(MBLUE) buffer required at a BS to increase TCP throughput in Mobile IP-based networks. When a queue length exceed a threshold and congestion grows, MBLUE increases its packet drop probability. But, when a TCP connection is added at new BS by a handoff, the old BS marks the buffered packets. And new BS receives the marked packets without dropping. Simulation results show that MBLUE buffer reduces congestion during handoffs and increases TCP throughputs.

Performance Improvement of Packet Loss Concealment Algorithm in G.711 Using Speech Characteristics (음성 특성을 이용한 G.711 패킷 손실 은닉 알고리즘의 성능개선)

  • Han Seung-Ho;Kim Jin-Sul;Lee Hyun-Woo;Ryu Won;Hahn Min-Soo
    • MALSORI
    • /
    • no.57
    • /
    • pp.175-189
    • /
    • 2006
  • Because a packet loss brings about degradation of speech quality, VoIP speech coders have PLC (Packet Loss Concealment) mechanism. G.711, which is a mandatory VoIP speech coder, also has the PLC algorithm based on pitch period replication. However, it is not robust to burst losses. Thus, we propose two methods to improve the performance of the original PLC algorithm in G.711. One adaptively utilizes voiced/unvoiced information of adjacent good frames regarding to the current lost frame. The other is based on adaptive gain control according to energy variation across the frames. We evaluate the performance of the proposed PLC algorithm by measuring a PESQ value under different random and burst packet loss simulating conditions. It is shown from the experiments that the performance of the proposed PLC algorithm outperforms that of PLC employed in ITU-T Recommendation G.711.

  • PDF

Performance Analysis of Random Early Dropping Effect at an Edge Router for TCP Fairness of DiffServ Assured Service

  • Hur Kyeong
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.31 no.4B
    • /
    • pp.255-269
    • /
    • 2006
  • The differentiated services(DiffServ) architecture provides packet level service differentiation through the simple and predefined Per-Hop Behaviors(PHBs). The Assured Forwarding(AF) PHB proposed as the assured services uses the RED-in/out(RIO) approach to ensusre the expected capacity specified by the service profile. However, the AF PHB fails to give good QoS and fairness to the TCP flows. This is because OUT(out- of-profile) packet droppings at the RIO buffer are unfair and sporadic during only network congestion while the TCP's congestion control algorithm works with a different round trip time(RTT). In this paper, we propose an Adaptive Regulating Drop(ARD) marker, as a novel dropping strategy at the ingressive edge router, to improve TCP fairness in assured services without a decrease in the link utilization. To drop packets pertinently, the ARD marker adaptively changes a Temporary Permitted Rate(TPR) for aggregate TCP flows. To reduce the excessive use of greedy TCP flows by notifying droppings of their IN packets constantly to them without a decrease in the link utilization, according to the TPR, the ARD marker performs random early fair remarking and dropping of their excessive IN packets at the aggregate flow level. Thus, the throughput of a TCP flow no more depends on only the sporadic and unfair OUT packet droppings at the RIO buffer in the core router. Then, the ARD marker regulates the packet transmission rate of each TCP flow to the contract rate by increasing TCP fairness, without a decrease in the link utilization.

MAC Protocol based on Spreading Code Status-Sensing Scheme for Integrated Voice/Data Services (확산코드 상태 감지 기법에 의한 통합 음성/데이터 서비스 MAC 프로토콜)

  • 임인택
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.5 no.5
    • /
    • pp.916-922
    • /
    • 2001
  • A medium access control protocol is proposed for integrated voice and data services in the packet CDMA network with a small coverage. Uplink channels are composed of time slots and multiple spreading codes for each slot. This protocol gives higher access priority to the delay-sensitive voice traffic than to the data traffic. During a talkspurt, voice terminals reserve a spreading code to transmit multiple voice packets. On the other hand, whenever generating a data packet, data terminals transmit a packet based on the status Information of spreading codes in the current slot, which is received from base station. In this protocol, voice packet does not come into collision with data packet. Therefore, this protocol can increase the maximum number of voice terminals.

  • PDF

Dynamic Backoff Scheme for CDMA-based Packet Radio Networks (CDMA 기반 패킷 무선망에서 동적 백오프 기법)

  • Lim, In-Taek
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • v.9 no.1
    • /
    • pp.561-564
    • /
    • 2005
  • This paper proposes an access control algorithm for guaranteeing fair packet transmissions in CDMA-based slotted ALOHA systems. In the proposed algorithm, the base station calculates the packet transmission and retransmission probabilities based on the offered loads and then broadcasts these probabilities to all mobile stations. Mobile stations, which have a packet to transmit, attempt to transmit a packet with the received probabilities. Simulation results show that the proposed algorithm can offer better system throughput and average delay than the conventional algorithm. Results also show that the proposed algorithm can guarantee a good fairness among all mobile stations regardless of the offered loads.

  • PDF