• Title/Summary/Keyword: Control of Cracking

Search Result 354, Processing Time 0.029 seconds

Effect of creep-fatigue interaction on high temperature low cycle fatigue strength and fracture behavior of STS 316 stainless steels (STS 316鋼 의 高溫低사이클 疲勞强度 와 破壞擧動 에 미치는 크리이프 - 疲勞 相互作용 의 影響)

  • 오세욱;이규용;김중완;문무경
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.9 no.2
    • /
    • pp.140-149
    • /
    • 1985
  • Fully reversed push-pull low cycle fatigue tests under strain control of trapezoid cyclic mode have been conducted in air at temperature of 550.deg. C and with frequency of 0.5 cpm on the domestic stainless steel STS 316 after solution treatment for 1 hour at 1100.deg. C. As an experimental equipment for high temperature fatigue tests, an electric servo-hydraulic fatigue machine(Instron model 1350) was used. This paper presents the effects of creep hold time and plastic strain range on push-pull high temperature low cycle fatigue life and fracture behavior. The fracture surfaces were observed by means of the scanning electron microscope. The results are as follows. (1) The fatigue life decreases with increase of the plastic strain range equal hold time and also decreases as the hold time is getting longer. (2) The frequency modified damage function can predict fatigue life by incorporating a variation of Coffin's frequency modified approach into damage function. (3) The ratios of creep damage and fatigue damage can be calculated by using he linear accumulation damage concept and the ratio of creep damage increases as the hold time is getting longer. (4) At the creep hold time of 5 minutes and the strain range of 2.0%, the fracture mode was intergranular fracture and striations were hardly observed. In this case, the intergranular cracking was originated in void type('.gamma.' type) cracking.

An Experimental Study on Structural Behavior of Segmental Joint in Prestressed Composite Girder (프리스트레스트 강합성거더의 분절 접합부 구조거동에 관한 실험적 연구)

  • Lee, Juwon;Ha, Taeyul;Yang, Inwook;Han, Jongwook
    • Journal of the Society of Disaster Information
    • /
    • v.12 no.4
    • /
    • pp.422-431
    • /
    • 2016
  • This study was evaluated in the performance of the connection according to the details of the concrete casing segment in the prestressed composite girder by fabricating and testing specimens with different segments. A total of four comparative specimens were fabricated by using the variables of general composite girders, reinforcement or non-reinforcement, and details of reinforcing bars in the segments so as to evaluate the structural behavior of steel girders. In addition, the possibility of non-cracking grade design of segmented composite girders as well as the effects of stiffness and strength according to the loop connection types after cracking were analyzed, and the appropriateness of the crack width control both the embedded steel plate and the concrete surface were evaluated.

Mechanical and Electrical Properties of Heavily Drawn Cu- Nb Nanocomposites with Various Nb contents (Nb함량에 따른 Cu-Nb나노복합재료의 기계적.전기적 특성)

  • Kim, Jong-Min;Jeong, Jin-Hui;Hong, Sun-Ik
    • Korean Journal of Materials Research
    • /
    • v.11 no.4
    • /
    • pp.312-318
    • /
    • 2001
  • The mechanical and electrical properties of Cu-Nb filamentary nanocomposite fabricated by the bundling and drawing process were examined. The strength increased gradually with increasing Nb content while the ductility was insensitive to Nb content. The ratio of yield stresses at 293K and 75K are found to be 치ose to that of Young's moduli in various Cu-Nb nanocomposites, suggesting that athermal obstacles primarily control the strength. The fracture morphologies show ductile fractures irrespective of Nb contents. Secondary cracking along the interfaces between subelemental wires was occasionally observed and the frequency of secondary cracking increased with increasing Nb content. The conductivity and the resistivity ratio decreased with increasing Nb content. The decrease of the conductivity and the resistivity ratio(${\rho}_{293k}$/$\{rho}_{75k}$) can be explained by the increasing contribution of interface scattering.

  • PDF

Effect of Normal Operating Condition Analysis Method for Weld Residual Stress of CRDM Nozzle in Reactor Pressure Vessel (원전 정상가동조건 적용 방식이 원자로 압력용기 상부헤드 관통 노즐의 용접 잔류응력에 미치는 영향)

  • Nam, Hyun Suk;Bae, Hong Yeol;Oh, Chang Young;Kim, Ji Soo;Kim, Yun Jae
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.37 no.9
    • /
    • pp.1159-1168
    • /
    • 2013
  • In pressurized water nuclear reactors (PWRs), the reactor pressure vessel (RPV) upper head contains penetration nozzles that use a control rod drive mechanism (CRDM). The penetration nozzle uses J-groove weld geometry. Recently, the occurrence of cracking in alloy 600 CRDM penetration nozzle has increased. This is attributable to primary water stress corrosion cracking (PWSCC). PWSCC is known to be susceptible to the welding residual stress and operational stress. Generally, the tensile residual stress is the main factor contributing to crack growth. Therefore, this study investigates the effect on weld residual stress through different analysis methods for normal operating conditions using finite element analysis. In addition, this study also considers the effect of repeated normal operating condition cycles on the weld residual stress. Based on the analysis result, this paper presents a normal operating condition analysis method.

Start and Stop Characteristics of Single-Rod Electro-Hydrostatic Actuator (전동기 일체형 편로드 유압액추에이터의 기동 및 정지특성해석)

  • Jung, Gyu-Hong
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.35 no.11
    • /
    • pp.1483-1490
    • /
    • 2011
  • Electro-hydrostatic actuators(EHAs), which are usually composed of a direct motor-driven hydraulic pump and a cylinder, have been widely adopted as aircraft actuation systems because of their benefits in terms of improved efficiency, weight savings and the fact that they use a standalone power source. Since the recent trend in construction vehicles has been focus on energy savings in their hydraulic systems, EHAs are expected to be potential substitutes for conventional power transmission, since they are capable of energy recovery as well as highly efficient pump control. In this paper, the start and stop characteristics of EHAs were investigated through cracking pressure analysis of the pilot-operated check valve(PCV), which enables the cylinder to standstill against an external load with no holding effort from the hydraulic pump. A mathematical model that includes the load dynamics and the EHA's internal hydraulic circuit was derived for simulation with the MATLAB Simulink package. This model verified the PCV's opening and closing sequence, which in turn affects the EHA's start and stop characteristics.

A Study of the Modulus Multiplier Design for Speed up Throughput in the Public-key Cryptosystem (공개키 암호시스템의 처리속도향상을 위한 모듈러 승산기 설계에 관한 연구)

  • 이선근;김환용
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.40 no.4
    • /
    • pp.51-57
    • /
    • 2003
  • The development of the communication network and the other network method can generate serious social problems. So, it is highly required to control security of network. These problems related security will be developed and keep up to confront with anti-security field such as hacking, cracking. The way to preserve security from hacker or cracker without developing new cryptographic algorithm is keeping the state of anti-cryptanalysis in a prescribed time by means of extending key-length. In this paper, we proposed M3 algorithm for the reduced processing time in the montgomery multiplication part. Proposed M3 algorithm using the matrix function M(.) and lookup table perform optionally montgomery multiplication with repeated operation. In this result, modified repeated operation part produce 30% processing rate than existed montgomery multiplicator. The proposed montgomery multiplication structured unit array method in carry generated part and variable length multiplication for eliminating bottle neck effect with the RSA cryptosystem. Therefore, this proposed montgomery multiplier enforce the real time processing and prevent outer cracking.

Design and Constructibility of an Engineered Cementitious Composite Produced with Cement-based Mortar Matrix and Synthetic Fibers (시멘트계 모르타르 매트릭스를 활용한 섬유복합재료 ECC(Engineered Cementitious Composite)의 설계와 시공 성능)

  • Kim, Yun-Yong
    • Composites Research
    • /
    • v.20 no.2
    • /
    • pp.21-26
    • /
    • 2007
  • This paper summarizes the design procedure and constructibility of an ECC (Engineered Cementitious Composite), which is a synthetic fiber-reinforced composite produced with the Portland cement-based mortar matrix. This study employs a stepwise method to develop useful ECC in construction field, which possesses different fluid properties to facilitate diverse types of processing (i.e., self-consolidating or spray processing). To control the rheological properties of the composite, the aggregates and reinforcing fibers were initially selected based on micromechanical analysis and steady-state cracking theory. The stability and consequent viscosity of the suspensions were then mediated by optimizing the dosage of the chemical and mineral admixtures. The rheological properties altered through this approach were revealed to be effective in obtaining ECC-hardened properties, represented by pseudo strain-hardening behavior in uniaxial tension, allowing the readily achievement of the desired function of the fresh ECC.

Effect of Freeze-Thaw Cycles after Cracking Damage on the Flexural Behavior of Reinforced Concrete Beams (균열손상 후 동결융해를 경험한 철근콘크리트 보의 휨거동)

  • Kim, Sun-Woo;Choi, Ki-Bong;Yun, Hyun-Do
    • Journal of the Korea Concrete Institute
    • /
    • v.22 no.3
    • /
    • pp.399-407
    • /
    • 2010
  • The flexural behaviors of two types of beam members exposed to freeze-thaw cycles were evaluated. This study aims to examine the effect of freeze-thaw cycles on the behavior characteristics of reinforced concrete (RC) beams. For the purpose, a part of the beam specimens were damaged until yielding of tension reinforcement was reached, before they were exposed to 150 and 300 cycles of freeze-thaw. Cyclic tests, as well as monotonic tests, were conducted to evaluate the stiffness degradation characteristics when same cycle is repeated. The material tests showed that relative dynamic modulus of concrete exposed to 300 cycles of freeze-thaw moderately decreased to 86.8% of normal concrete, indicating that concrete used in this study has good durability against freeze and thaw damage. The results of monotonic tests showed reduction of flexural strength, ductility and stiffness of the beam specimens exposed to freeze-thaw cycles compared with those of the control speciments. In particular, BDF13 specimens, which had been subjected to artificial cracking damage, did not showed enough flexural strength to satisfy nominal moment required by current concrete structure design code. In the monotonic tests results, BF75 specimens exposed to freeze-thaw cycles showed 10% or more cyclic stiffness degradation. Therefore, it was thought that deformation of concrete in compression have to be considered in design process of members under cyclic load, such as seismic device.

Application of High-Performance Steels to Enhance the Punching Shear Capacity of Two-Way Slabs (2방향 슬래브의 펀칭전단성능 향상을 위한 고성능 철근의 적용)

  • Yang, Jun Mo;Shin, Hyun Oh;Lee, Joo Ha;Yoon, Young Soo
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.15 no.2
    • /
    • pp.161-169
    • /
    • 2011
  • Two-way slabs reinforced with high-performance steels, which have several practical advantages of a reduction of congestion in heavily reinforced members, savings in the cost of labor and repair, the higher corrosion resistance, and a reduction of construction time, were constructed and tested. The influences of the flexural reinforcement ratio, concentrating the reinforcement in the immediate column region, and using steel fiber-reinforced concrete (SFRC) in the slab on the punching shear resistance and post-cracking stiffness were investigated, and compared with the punching shear test results of the slabs reinforced with conventional steels and GFRP bars. In addition, the strain distribution of flexural reinforcements and crack control were investigated, and the effective width calculating method for the average flexural reinforcement ratio was estimated. The use of high-performance steel reinforcement increased the punching shear strength of slabs, and decreased the amount of flexural reinforcements. The concentrating the top mat of flexural reinforcement increased the post-cracking stiffness, and showed better strain distribution and crack control. In addition, the use of SFRC showed beneficial effects on the punching shear strength and crack control. It was suggest that the effective width should be changed to larger than 2 times the slab thickness from the column faces.

A Study on the Construction Specification and Quality Assurance Criteria in Clay Paver (점토바닥벽돌의 품질 및 시공기준 연구)

  • Park, Dae-Gun;Lee, Sang-Yum;Kim, Kyoon-Tai
    • Korean Journal of Construction Engineering and Management
    • /
    • v.11 no.6
    • /
    • pp.111-121
    • /
    • 2010
  • As the customer's interest for sidewalk block in the street or apartment complex is increasing, the materials of block which had been a concrete block exclusively are varied to clay paver, native rock and wood etc. Especially, the sales volume of clay paver which is environment-friendly and ergonomic is dramatically increasing every year with two digits growth rate, however, many problems like "Edge Cracking" "Freezing Breakage" "Bending Breakage" "Joint Gap" are happening frequently within a couple of hours after installation due to the durabilities. Because of the characteristics of Ceramic products, clay pavers are very easy to be broken when they are bumped against each other. In addition, they are relatively fragile by a freezing expansion breakage when exposed to water due to hydrophilic property as well as the intensity and absorptance of the products are varied with small difference from the production process such as production equipment and process control. Therefore, it costs a lot of money to repair the breakdown unless production and installation is carried out according to the strict criteria of the quality control. In this study, the symptoms of breakdown frequently happened in clay paver are classified by each type and finally the solution for this problem in the production of brick, installation and criteria of quality control through compressive strength and absorptance test is suggested.