• Title/Summary/Keyword: Control flow

Search Result 7,427, Processing Time 0.037 seconds

Effects of Modified Ultrafiltration in Pediatric Open Heart Surgery (소아 개심술에 있어서 변형초여과법의 효과)

  • 전태국;박표원
    • Journal of Chest Surgery
    • /
    • v.30 no.6
    • /
    • pp.591-597
    • /
    • 1997
  • Cardiopulmonary bypass in children is associated with capillary leak which results in an increase in total body water after open heart surgery The purpose of these studies was to assess the cardiopulmonary effects of modified ultrafiltration after pediatric open heart surgery Study h: Twenty-six consecutive children aged 0.1 ~ 10 years(median 7 months) underwent cardiac operation inc rporating modified ultrafiltration. After completion of cardiopulmonary bypass, modified ultrafiltration was commenced at the flow rate of 100~ 15011min for 3 ~ 14 min. After modified ultrafiltration, elevation of hematocrit(28.3% $\pm$ 3.6% vs. 33.8olo $\pm$ 4.Ooloi p < 0.001), increased systolic 1)loots Pressure(66.7 $\pm$ 11.2mmHg vs. 76.2$\pm$ 11.BmmHg, p < 0.02), and decreased central venous pressure(7.8 $\pm$ 3.7mmHg vs. 6.9$\pm$ 2.gmmHg, p<0.001) were observed. Study B: Twenty-six children who underwent cardiac operation with the diagnosis of VSD under 2 years were assigned to control(n= 14) or modified ultrafiltration(n= 12). Peak inspiratory pressure checked immediately after operation was significantly lower in modified ultrafiltration group than in control group(20.0$\pm$ 2.4 cmH20 vs.22.4$\pm$ 2.3cmH20, p < 0.03). Modified ultrafiltration after cardiopillmonary bypass in children improves early homodynamics and pulmonary mechanics, and represents an excellent option for perioperative managemen of accumulation of fluid in the tissues. We will continually employ the modified ultrafiltration technique in pediatric cardiac operations.

  • PDF

An Experimental Study on the Hydration Heat of Concrete Using Phosphate based Inorganic Salt (인산계 무기염을 이용한 콘크리트의 수화 발열 특성에 관한 실험적 연구)

  • Jeong, Seok-Man;Kim, Se-Hwan;Yang, Wan-Hee;Kim, Young-Sun;Ki, Jun-Do;Lee, Gun-Cheol
    • Journal of the Korea Institute of Building Construction
    • /
    • v.20 no.6
    • /
    • pp.489-495
    • /
    • 2020
  • Whereas the control of the hydration heat in mass concrete has been important as the concrete structures enlarge, many conventional strategies show some limitations in their effectiveness and practicality. Therefore, In this study, as a solution of controling the heat of hydration of mass concrete, a method to reduce the heat of hydration by controlling the hardening of cement was examined. The reduction of the hydration heat by the developed Phosphate Inorganic Salt was basically verified in the insulated boxes filled with binder paste or concrete mixture. That is, the effects of the Phosphate Inorganic Salt on the hydration heat, flow or slump, and compressive strength were analyzed in binary and ternary blended cement which is generally used for low heat. As a result, the internal maximum temperature rise induced by the hydration heat was decreased by 9.5~10.6% and 10.1~11.7% for binder paste and concrete mixed with the Phosphate Inorganic Salt, respectively. Besides, the delay of the time corresponding to the peak temperature was apparently observed, which is beneficial to the emission of the internal hydration heat in real structures. The Phosphate Inorganic Salt that was developed and verified by a series of the aforementioned experiments showed better performance than the existing ones in terms of the control of the hydration heat and other performance. It can be used for the purpose of hydration heat of mass concrete in the future.

Establishment of A WebGIS-based Information System for Continuous Observation during Ocean Research Vessel Operation (WebGIS 기반 해양 연구선 상시관측 정보 체계 구축)

  • HAN, Hyeon-Gyeong;LEE, Cholyoung;KIM, Tae-Hoon;HAN, Jae-Rim;CHOI, Hyun-Woo
    • Journal of the Korean Association of Geographic Information Studies
    • /
    • v.24 no.1
    • /
    • pp.40-53
    • /
    • 2021
  • Research vessels(R/Vs) used for ocean research move to the planned research area and perform ocean observations suitable for the research purpose. The five research vessels of the Korea Institute of Ocean Science & Technology(KIOST) are equipped with global positioning system(GPS), water depth, weather, sea surface layer temperature and salinity measurement equipment that can be observed at all times during cruise. An information platform is required to systematically manage and utilize the data produced through such continuous observation equipment. Therefore, the data flow was defined through a series of business analysis ranging from the research vessel operation plan to observation during the operation of the research vessel, data collection, data processing, data storage, display and service. After creating a functional design for each stage of the business process, KIOST Underway Meteorological & Oceanographic Information System(KUMOS), a Web-Geographic information system (Web-GIS) based information platform, was built. Since the data produced during the cruise of the R/Vs have characteristics of temporal and spatial variability, a quality management system was developed that considered these variabilities. For the systematic management and service of data, the KUMOS integrated Database(DB) was established, and functions such as R/V tracking, data display, search and provision were implemented. The dataset provided by KUMOS consists of cruise report, raw data, Quality Control(QC) flagged data, filtered data, cruise track line data, and data report for each cruise of the R/V. The business processing procedure and system of KUMOS for each function developed through this study are expected to serve as a benchmark for domestic ocean-related institutions and universities that have research vessels capable of continuous observations during cruise.

Development of Summer Leaf Vegetable Crop Energy Model for Rooftop Greenhouse (옥상온실에서의 여름철 엽채류 작물에너지 교환 모델 개발)

  • Cho, Jeong-Hwa;Lee, In-Bok;Lee, Sang-Yeon;Kim, Jun-Gyu;Decano, Cristina;Choi, Young-Bae;Lee, Min-Hyung;Jeong, Hyo-Hyeog;Jeong, Deuk-Young
    • Journal of Bio-Environment Control
    • /
    • v.31 no.3
    • /
    • pp.246-254
    • /
    • 2022
  • Domestic facility agriculture grows rapidly, such as modernization and large-scale. And the production scale increases significantly compared to the area, accounting for about 60% of the total agricultural production. Greenhouses require energy input to create an appropriate environment for stable mass production throughout the year, but the energy load per unit area is large because of low insulation properties. Through the rooftop greenhouse, one of the types of urban agriculture, energy that is not discarded or utilized in the building can be used in the rooftop greenhouse. And the cooling and heating load of the building can be reduced through optimal greenhouse operation. Dynamic energy analysis for various environmental conditions should be preceded for efficient operation of rooftop greenhouses, and about 40% of the solar energy introduced in the greenhouse is energy exchange for crops, so it should be considered essential. A major analysis is needed for each sensible heat and latent heat load by leaf surface temperature and evapotranspiration, dominant in energy flow. Therefore, an experiment was conducted in a rooftop greenhouse located at the Korea Institute of Machinery and Materials to analyze the energy exchange according to the growth stage of crops. A micro-meteorological and nutrient solution environment and growth survey were conducted around the crops. Finally, a regression model of leaf temperature and evapotranspiration according to the growth stage of leafy vegetables was developed, and using this, the dynamic energy model of the rooftop greenhouse considering heat transfer between crops and the surrounding air can be analyzed.

A study on inspection methods for waste treatment facilities(I): Derivation of impact factor and mass·energy balance in waste treatment facilities (폐기물처리시설의 세부검사방법 마련연구(I): 공정별 주요인자 도출 및 물질·에너지수지 산정)

  • Pul-Eip Lee;Eunhye Kwon;Jun-Ik Son;Jun-Gu Kang;Taewan Jeon;Dong-Jin Lee
    • Journal of the Korea Organic Resources Recycling Association
    • /
    • v.31 no.1
    • /
    • pp.69-84
    • /
    • 2023
  • Despite the continuous installation and regular inspection of waste treatment facilities, complaints about excessive incineration and illegal dumping stench continue to occur at on-site treatment facilities. In addition, field surveys were conducted on the waste treatment facilities currently in operation (6 type) to understand the waste treatment process for each field, to grasp the main operating factors applied to the inspection. In addition, we calculated the material·energy balance for each main process and confirmed the proper operation of the waste disposal facility. As a result of the site survey, in the case of heat treatment facilities such as incineration, cement kilns, and incineration heat recovery facilities, the main factors are maintenance of the temperature of the incinerator required for incineration and treatment of the generated air pollutants, and in the case of landfill facilities Retaining wall stability, closed landfill leachate and emission control emerged as major factors. In the case of sterilization and crushing facilities, the most important factor is whether or not sterilization is possible (apobacterium inspection).In the case of food distribution waste treatment facilities, retention time and odor control during fermentation (digestion, decomposed) are major factors. Calculation results of material balance and energy resin for each waste treatment facility In the case of incineration facilities, it was confirmed that the amount of flooring materials generated is about 14 % and the amount of scattering materials is about 3 % of the amount of waste input, and that the facility is being operated properly. In addition, among foodwaste facilities, in the case of an anaerobic digestion facility, the amount of biogas generated relative to the amount of inflow is about 17 %, and the biogas conversion efficiency is about 81 %, in the case of composting facility, about 11 % composting of the inflow waste was produced, and it was comfirmend that all were properly operated. As a result, in order to improve the inspection method for waste treatment facilities, it is necessary not only to accumulate quantitative standards for detailed inspection methods, but also to collect operational data for one year at the time of regular inspections of each facility, Grasping the flow and judging whether or not the treatment facility is properly operated. It is then determined that the operation and management efficiency of the treatment facility will increase.

The Impacts of Need for Cognitive Closure, Psychological Wellbeing, and Social Factors on Impulse Purchasing (인지폐합수요(认知闭合需要), 심리건강화사회인소대충동구매적영향(心理健康和社会因素对冲动购买的影响))

  • Lee, Myong-Han;Schellhase, Ralf;Koo, Dong-Mo;Lee, Mi-Jeong
    • Journal of Global Scholars of Marketing Science
    • /
    • v.19 no.4
    • /
    • pp.44-56
    • /
    • 2009
  • Impulse purchasing is defined as an immediate purchase with no pre-shopping intentions. Previous studies of impulse buying have focused primarily on factors linked to marketing mix variables, situational factors, and consumer demographics and traits. In previous studies, marketing mix variables such as product category, product type, and atmospheric factors including advertising, coupons, sales events, promotional stimuli at the point of sale, and media format have been used to evaluate product information. Some authors have also focused on situational factors surrounding the consumer. Factors such as the availability of credit card usage, time available, transportability of the products, and the presence and number of shopping companions were found to have a positive impact on impulse buying and/or impulse tendency. Research has also been conducted to evaluate the effects of individual characteristics such as the age, gender, and educational level of the consumer, as well as perceived crowding, stimulation, and the need for touch, on impulse purchasing. In summary, previous studies have found that all products can be purchased impulsively (Vohs and Faber, 2007), that situational factors affect and/or at least facilitate impulse purchasing behavior, and that various individual traits are closely linked to impulse buying. The recent introduction of new distribution channels such as home shopping channels, discount stores, and Internet stores that are open 24 hours a day increases the probability of impulse purchasing. However, previous literature has focused predominantly on situational and marketing variables and thus studies that consider critical consumer characteristics are still lacking. To fill this gap in the literature, the present study builds on this third tradition of research and focuses on individual trait variables, which have rarely been studied. More specifically, the current study investigates whether impulse buying tendency has a positive impact on impulse buying behavior, and evaluates how consumer characteristics such as the need for cognitive closure (NFCC), psychological wellbeing, and susceptibility to interpersonal influences affect the tendency of consumers towards impulse buying. The survey results reveal that while consumer affective impulsivity has a strong positive impact on impulse buying behavior, cognitive impulsivity has no impact on impulse buying behavior. Furthermore, affective impulse buying tendency is driven by sub-components of NFCC such as decisiveness and discomfort with ambiguity, psychological wellbeing constructs such as environmental control and purpose in life, and by normative and informational influences. In addition, cognitive impulse tendency is driven by sub-components of NFCC such as decisiveness, discomfort with ambiguity, and close-mindedness, and the psychological wellbeing constructs of environmental control, as well as normative and informational influences. The present study has significant theoretical implications. First, affective impulsivity has a strong impact on impulse purchase behavior. Previous studies based on affectivity and flow theories proposed that low to moderate levels of impulsivity are driven by reduced self-control or a failure of self-regulatory mechanisms. The present study confirms the above proposition. Second, the present study also contributes to the literature by confirming that impulse buying tendency can be viewed as a two-dimensional concept with both affective and cognitive dimensions, and illustrates that impulse purchase behavior is explained mainly by affective impulsivity, not by cognitive impulsivity. Third, the current study accommodates new constructs such as psychological wellbeing and NFCC as potential influencing factors in the research model, thereby contributing to the existing literature. Fourth, by incorporating multi-dimensional concepts such as psychological wellbeing and NFCC, more diverse aspects of consumer information processing can be evaluated. Fifth, the current study also extends the existing literature by confirming the two competing routes of normative and informational influences. Normative influence occurs when individuals conform to the expectations of others or to enhance his/her self-image. Whereas informational influence occurs when individuals search for information from knowledgeable others or making inferences based upon observations of the behavior of others. The present study shows that these two competing routes of social influence can be attributed to different sources of influence power. The current study also has many practical implications. First, it suggests that people with affective impulsivity may be primary targets to whom companies should pay closer attention. Cultivating a more amenable and mood-elevating shopping environment will appeal to this segment. Second, the present results demonstrate that NFCC is closely related to the cognitive dimension of impulsivity. These people are driven by careless thoughts, not by feelings or excitement. Rational advertising at the point of purchase will attract these customers. Third, people susceptible to normative influences are another potential target market. Retailers and manufacturers could appeal to this segment by advertising their products and/or services as products that can be used to identify with or conform to the expectations of others in the aspiration group. However, retailers should avoid targeting people susceptible to informational influences as a segment market. These people are engaged in an extensive information search relevant to their purchase, and therefore more elaborate, long-term rational advertising messages, which can be internalized into these consumers' thought processes, will appeal to this segment. The current findings should be interpreted with caution for several reasons. The study used a small convenience sample, and only investigated behavior in two dimensions. Accordingly, future studies should incorporate a sample with more diverse characteristics and measure different aspects of behavior. Future studies should also investigate personality traits closely related to affectivity theories. Trait variables such as sensory curiosity, interpersonal curiosity, and atmospheric responsiveness are interesting areas for future investigation.

  • PDF

Field Studios of In-situ Aerobic Cometabolism of Chlorinated Aliphatic Hydrocarbons

  • Semprini, Lewts
    • Proceedings of the Korean Society of Soil and Groundwater Environment Conference
    • /
    • 2004.04a
    • /
    • pp.3-4
    • /
    • 2004
  • Results will be presented from two field studies that evaluated the in-situ treatment of chlorinated aliphatic hydrocarbons (CAHs) using aerobic cometabolism. In the first study, a cometabolic air sparging (CAS) demonstration was conducted at McClellan Air Force Base (AFB), California, to treat chlorinated aliphatic hydrocarbons (CAHs) in groundwater using propane as the cometabolic substrate. A propane-biostimulated zone was sparged with a propane/air mixture and a control zone was sparged with air alone. Propane-utilizers were effectively stimulated in the saturated zone with repeated intermediate sparging of propane and air. Propane delivery, however, was not uniform, with propane mainly observed in down-gradient observation wells. Trichloroethene (TCE), cis-1, 2-dichloroethene (c-DCE), and dissolved oxygen (DO) concentration levels decreased in proportion with propane usage, with c-DCE decreasing more rapidly than TCE. The more rapid removal of c-DCE indicated biotransformation and not just physical removal by stripping. Propane utilization rates and rates of CAH removal slowed after three to four months of repeated propane additions, which coincided with tile depletion of nitrogen (as nitrate). Ammonia was then added to the propane/air mixture as a nitrogen source. After a six-month period between propane additions, rapid propane-utilization was observed. Nitrate was present due to groundwater flow into the treatment zone and/or by the oxidation of tile previously injected ammonia. In the propane-stimulated zone, c-DCE concentrations decreased below tile detection limit (1 $\mu$g/L), and TCE concentrations ranged from less than 5 $\mu$g/L to 30 $\mu$g/L, representing removals of 90 to 97%. In the air sparged control zone, TCE was removed at only two monitoring locations nearest the sparge-well, to concentrations of 15 $\mu$g/L and 60 $\mu$g/L. The responses indicate that stripping as well as biological treatment were responsible for the removal of contaminants in the biostimulated zone, with biostimulation enhancing removals to lower contaminant levels. As part of that study bacterial population shifts that occurred in the groundwater during CAS and air sparging control were evaluated by length heterogeneity polymerase chain reaction (LH-PCR) fragment analysis. The results showed that an organism(5) that had a fragment size of 385 base pairs (385 bp) was positively correlated with propane removal rates. The 385 bp fragment consisted of up to 83% of the total fragments in the analysis when propane removal rates peaked. A 16S rRNA clone library made from the bacteria sampled in propane sparged groundwater included clones of a TM7 division bacterium that had a 385bp LH-PCR fragment; no other bacterial species with this fragment size were detected. Both propane removal rates and the 385bp LH-PCR fragment decreased as nitrate levels in the groundwater decreased. In the second study the potential for bioaugmentation of a butane culture was evaluated in a series of field tests conducted at the Moffett Field Air Station in California. A butane-utilizing mixed culture that was effective in transforming 1, 1-dichloroethene (1, 1-DCE), 1, 1, 1-trichloroethane (1, 1, 1-TCA), and 1, 1-dichloroethane (1, 1-DCA) was added to the saturated zone at the test site. This mixture of contaminants was evaluated since they are often present as together as the result of 1, 1, 1-TCA contamination and the abiotic and biotic transformation of 1, 1, 1-TCA to 1, 1-DCE and 1, 1-DCA. Model simulations were performed prior to the initiation of the field study. The simulations were performed with a transport code that included processes for in-situ cometabolism, including microbial growth and decay, substrate and oxygen utilization, and the cometabolism of dual contaminants (1, 1-DCE and 1, 1, 1-TCA). Based on the results of detailed kinetic studies with the culture, cometabolic transformation kinetics were incorporated that butane mixed-inhibition on 1, 1-DCE and 1, 1, 1-TCA transformation, and competitive inhibition of 1, 1-DCE and 1, 1, 1-TCA on butane utilization. A transformation capacity term was also included in the model formation that results in cell loss due to contaminant transformation. Parameters for the model simulations were determined independently in kinetic studies with the butane-utilizing culture and through batch microcosm tests with groundwater and aquifer solids from the field test zone with the butane-utilizing culture added. In microcosm tests, the model simulated well the repetitive utilization of butane and cometabolism of 1.1, 1-TCA and 1, 1-DCE, as well as the transformation of 1, 1-DCE as it was repeatedly transformed at increased aqueous concentrations. Model simulations were then performed under the transport conditions of the field test to explore the effects of the bioaugmentation dose and the response of the system to tile biostimulation with alternating pulses of dissolved butane and oxygen in the presence of 1, 1-DCE (50 $\mu$g/L) and 1, 1, 1-TCA (250 $\mu$g/L). A uniform aquifer bioaugmentation dose of 0.5 mg/L of cells resulted in complete utilization of the butane 2-meters downgradient of the injection well within 200-hrs of bioaugmentation and butane addition. 1, 1-DCE was much more rapidly transformed than 1, 1, 1-TCA, and efficient 1, 1, 1-TCA removal occurred only after 1, 1-DCE and butane were decreased in concentration. The simulations demonstrated the strong inhibition of both 1, 1-DCE and butane on 1, 1, 1-TCA transformation, and the more rapid 1, 1-DCE transformation kinetics. Results of tile field demonstration indicated that bioaugmentation was successfully implemented; however it was difficult to maintain effective treatment for long periods of time (50 days or more). The demonstration showed that the bioaugmented experimental leg effectively transformed 1, 1-DCE and 1, 1-DCA, and was somewhat effective in transforming 1, 1, 1-TCA. The indigenous experimental leg treated in the same way as the bioaugmented leg was much less effective in treating the contaminant mixture. The best operating performance was achieved in the bioaugmented leg with about over 90%, 80%, 60 % removal for 1, 1-DCE, 1, 1-DCA, and 1, 1, 1-TCA, respectively. Molecular methods were used to track and enumerate the bioaugmented culture in the test zone. Real Time PCR analysis was used to on enumerate the bioaugmented culture. The results show higher numbers of the bioaugmented microorganisms were present in the treatment zone groundwater when the contaminants were being effective transformed. A decrease in these numbers was associated with a reduction in treatment performance. The results of the field tests indicated that although bioaugmentation can be successfully implemented, competition for the growth substrate (butane) by the indigenous microorganisms likely lead to the decrease in long-term performance.

  • PDF

Cardioprotective Effect of Calcium Preconditioning and Its Relation to Protein Kinase C in Isolated Perfused Rabbit Heart (적출관류 토끼 심장에서 칼슘 전처치에 의한 심근보호 효과와 Protein Kinase C와의 관계)

  • 김용한;손동섭;조대윤;양기민;김호덕
    • Journal of Chest Surgery
    • /
    • v.32 no.7
    • /
    • pp.603-612
    • /
    • 1999
  • Background : It has been documented that brief repetitive periods of ischemia and reperfusion (ischemic preconditioning, IP) enhances the recovery of post-ischemic contractile function and reduces infarct size after a longer period of ischemia. Many mechanisms have been proposed to explain this process. Recent studies have suggested that transient increase in the intracellular calcium may have triggered the activation of protein kinase C(PKC); however, there are still many controversies. Accordingly, the author performed the present study to test the hypothesis that preconditioning with high concentration of calcium before sustained subsequent ischemia(calcium preconditioning) mimics IP by PKC activation. Material and Method : The isolated hearts from the New Zealand White rabbits(1.5∼2.0 kg body weight) Method: The isolated hearts from the New Zealand White rabbits(1.5∼2.0 kg body weight) were perfused with Tyrode solution by Langendorff technique. After stabilization of baseline hemodynamics, the hearts were subjected to 45-minute global ischemia followed by a 120-minute reperfusion with IP(IP group, n=13) or without IP(ischemic control, n=10). IP was induced by single episode of 5-minute global ischemia and 10-minute reperfusion. In the Ca2+ preconditioned group, perfusate containing 10(n=10) or 20 mM(n=11) CaCl2 was perfused for 10 minutes after 5-minute ischemia followed by a 45-minute global ischemia and a 120-minute reperfusion. Baseline PKC was measured after 50-minute perfusion without any treatment(n=5). Left ventricular function including developed pressure(LVDP), dP/dt, heart rate, left ventricular end-diastolic pressure(LVEDP) and coronary flow(CF) was measured. Myo car ial cytosolic and membrane PKC activities were measured by 32P-${\gamma}$-ATP incorporation into PKC-specific pepetide. The infarct size was determined using the TTC (tetrazolium salt) staining and planimetry. Data were analyzed using one-way analysis of variance(ANOVA) variance(ANOVA) and Tukey's post-hoc test. Result: IP increased the functional recovery including LVDP, dP/dt and CF(p<0.05) and lowered the ascending range of LVEDP(p<0.05); it also reduced the infarct size from 38% to 20%(p<0.05). In both of the Ca2+ preconditioned group, functional recovery was not significantly different in comparison with the ischemic control, however, the infarct size was reduced to 19∼23%(p<0.05). In comparison with the baseline(7.31 0.31 nmol/g tissue), the activities of the cytosolic PKC tended to decrease in both the IP and Ca2+ preconditioned groups, particularly in the 10 mM Ca2+ preconditioned group(4.19 0.39 nmol/g tissue, p<0.01); the activity of membrane PKC was significantly increased in both IP and 10 mM Ca2+ preconditioned group (p<0.05; 1.84 0.21, 4.00 0.14, and 4.02 0.70 nmol/g tissue in the baseline, IP, and 10 mM Ca2+ preconditioned group, respectively). However, the activity of both PKC fractions were not significantly different between the baseline and the ischemic control. Conclusion: These results indicate that in isolated Langendorff-perfused rabbit heart model, calcium preconditioning with high concentration of calcium does not improve post-ischemic functional recovery. However, it does have an effect of limiting(reducing) the infart size by ischemic preconditioning, and this cardioprotective effect, at least in part, may have resulted from the activation of PKC by calcium which acts as a messenger(or trigger) to activate membrane PKC.

  • PDF

Plasma G-CSF and GM-CSF Concentrations and Expression of their Receptors on the Granulocyte in Children with Leukocytosis (백혈구 증가증 환아의 혈장내 G-CSF와 GM-CSF의 농도 및 과립구에서의 이들 수용체의 발현)

  • Choi, Won Seok;Ryu, Kyung Hwan;Kim, You Jeong;Kim, So Young;Kim, Hyun Hee;Lee, Wonbae
    • Clinical and Experimental Pediatrics
    • /
    • v.46 no.3
    • /
    • pp.271-276
    • /
    • 2003
  • Purpose : Granulocyte-colony stimulating factor(G-CSF) and granulocyte macrophage-colony stimulating factor(GM-CSF) are principal cytokines in granulopoiesis and their physiologic effects are mediated through binding to specific cell surface receptors. Although it is known that the level of serum G-CSF and GM-CSF, and presentation of the receptors are increased in infectious diseases, there have been no studies to find the correlation between the granulopoiesis and leukocytosis. This study was designed to measure G-CSF and GM-CSF in leukocytosis and in control and to demonstrate the possible pathogenesis of granulopoiesis in leukocytosis using quantitative analysis of G-CSF, GM-CSF and their CSFr. Methods : The plasma levels of G-CSF, GM-CSF of 13 children without leukocytosis and 14 children with leukocytosis were measured. Counts of cell surface G-CSFr and GM-CSFr were measured by combining anti G-CSFr and anti GM-CSFr monoclonal antibodies to their respective receptors by using quantitative flow cytometric assay. Results : There was no significant difference betweeen the plasma concentration of G-CSF and GM-CSF in acute leukocytosis and in the control group. However, levels of G-CSFr in acute leukocytosis decreased significantly compared to the control(P=0.012) and the levels of GM-CSFr in both groups revealed no significant difference. Conclusion : Increase in the number of leukocyte in leukocytosis was mediated by increasing the number of neutrophil, and increased plasma concentration of G-CSF may be the cause of neutrophilia. But GM-CSF did not have any influence on leukocytosis.

Application of a Single-pulsatile Extracorporeal Life Support System for Extracorporeal Membrane Oxygenation -An experimental study - (단일 박동형 생명구조장치의 인공폐 적용 -실험연구-)

  • Kim, Tae-Sik;Sun, Kyung;Lee, Kyu-Baek;Park, Sung-Young;Hwang, Jae-Joon;Son, Ho-Sung;Kim, Kwang-Taik;Kim. Hyoung-Mook
    • Journal of Chest Surgery
    • /
    • v.37 no.3
    • /
    • pp.201-209
    • /
    • 2004
  • Extracorporeal life support (ECLS) system is a device for respiratory and/or heart failure treatment, and there have been many trials for development and clinical application in the world. Currently, a non-pulsatile blood pump is a standard for ECLS system. Although a pulsatile blood pump is advantageous in physiologic aspects, high pressure generated in the circuits and resultant blood cell trauma remain major concerns which make one reluctant to use a pulsatile blood pump in artificial lung circuits containing a membrane oxygenator. The study was designed to evaluate the hypothesis that placement of a pressure-relieving compliance chamber between a pulsatile pump and a membrane oxygenator might reduce the above mentioned side effects while providing physiologic pulsatile blood flow. The study was performed in a canine model of oleic acid induced acute lung injury (N=16). The animals were divided into three groups according to the type of pump used and the presence of the compliance chamber, In group 1, a non-pulsatile centrifugal pump was used as a control (n=6). In group 2 (n=4), a single-pulsatile pump was used. In group 3 (n=6), a single-pulsatile pump equipped with a compliance chamber was used. The experimental model was a partial bypass between the right atrium and the aorta at a pump flow of 1.8∼2 L/min for 2 hours. The observed parameters were focused on hemodynamic changes, intra-circuit pressure, laboratory studies for blood profile, and the effect on blood cell trauma. In hemodynamics, the pulsatile group II & III generated higher arterial pulse pressure (47$\pm$ 10 and 41 $\pm$ 9 mmHg) than the nonpulsatile group 1 (17 $\pm$ 7 mmHg, p<0.001). The intra-circuit pressure at membrane oxygenator were 222 $\pm$ 8 mmHg in group 1, 739 $\pm$ 35 mmHg in group 2, and 470 $\pm$ 17 mmHg in group 3 (p<0.001). At 2 hour bypass, arterial oxygen partial pressures were significantly higher in the pulsatile group 2 & 3 than in the non-pulsatile group 1 (77 $\pm$ 41 mmHg in group 1, 96 $\pm$ 48 mmHg in group 2, and 97 $\pm$ 25 mmHg in group 3: p<0.05). The levels of plasma free hemoglobin which was an indicator of blood cell trauma were lowest in group 1, highest in group 2, and significantly decreased in group 3 (55.7 $\pm$ 43.3, 162.8 $\pm$ 113.6, 82.5 $\pm$ 25.1 mg%, respectively; p<0.05). Other laboratory findings for blood profile were not different. The above results imply that the pulsatile blood pump is beneficial in oxygenation while deleterious in the aspects to high pressure generation in the circuits and blood cell trauma. However, when a pressure-relieving compliance chamber is applied between the pulsatile pump and a membrane oxygenator, it can significantly reduce the high circuit pressure and result in low blood cell trauma.