• Title/Summary/Keyword: Control compensator

Search Result 798, Processing Time 0.027 seconds

A Study of the Power Flow Control Using SSSC (SSSC를 이용한 전력조류제어에 관한 연구)

  • Na, Wan-Ki;Chung, Jai-Kil;Lee, In-Yong;Chung, In-Hark;Lee, Hong-Joo
    • Proceedings of the KIEE Conference
    • /
    • 2000.07a
    • /
    • pp.239-241
    • /
    • 2000
  • This paper describes a modeling of a FACTS(Flexible AC Transmission System) device, namely, SSSC(Static Synchronous Series Compensator) model. The SSSC, a solid-state voltage source inverter coupled with a transformer, is connected in series with a transmission line. SSSC provides controllable compensating voltage, which is in quadrature with the line current, over an capacitive and an inductive range, independently of the magnitude of the line current. This SSSC model is obtained from the injection model for series connected VSC(Voltage Source Converter) by adding a constraint that the injected voltage should be in quadrature with the line current. The paper discusses the basic operating and performance characteristics of the SSSC, and power flow control in power system.

  • PDF

Nonlinear Adaptive Control of Unmanned Helicopter Using Neural Networks Compensator (신경회로망 보상기를 이용한 무인헬리콥터의 비선형적응제어)

  • Park, Bum-Jin;Hong, Chang-Ho
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.38 no.4
    • /
    • pp.335-341
    • /
    • 2010
  • To improve the performance of inner loop based on PD controller for a unmanned helicopter, neural networks are applied. The performance of PD controller designed on the response characteristics of error dynamics decreases because of uncertain nonlinearities of the system. The nonlinearities are decoupled to modified dynamic inversion model(MDIM) and are compensated by the neural networks. For the training of the neural networks, online weight adaptation laws which are derived from Lyapunov's direct method are used to guarantee the stability of the controller. The results of the improved performance of PD controller by neural networks are illustrated in the simulation of unmanned helicopter with nonlinearities,

Implementation of the Controller for a Stable Walking of a Humanoid Robot Using Improved Genetic Algorithm (개선된 유전 알고리즘 기반의 휴머노이드 로봇의 안정 보행을 위한 제어기 구현)

  • Kong, Jung-Shik;Lee, Eung-Hyuk;Kim, Jin-Geol
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.13 no.5
    • /
    • pp.399-405
    • /
    • 2007
  • This paper deals with the controller for a stable walking of a humanoid robot using genetic algorithm. A humanoid robot has instability during walking because it isn't fixed on the ground, and its nonlinearities of the joints increase its instability. If controller isn't robust, the robot may fall down at the ground during walking because of its nonlinearities. To solve this problem, robust controller is required to reduce the effect of nonlinearities and to gain the good tracking performance. In this paper, motion controller that is based on fuzzy-sliding mode controller is proposed. This controller can remove the effect of the saturation by limitation of the input voltage. It also includes compensator for reducing the effect of the nonlinearity by backlash and PI controller improving the tracking performance. In here, genetic algorithm is used for searching the optimal gains of the controller. From the given controller, a humanoid robot can moved more preciously. All the processes are investigated through simulations and are verified experimentally in a real joint system for a humanoid robot.

A Design of Power System Stabilization for SVC System Using Self Tuning Fuzzy Controller (자기조정 퍼지제어기를 이용한 SVC계통의 안정화 장치의 설계)

  • Joo, Seok-Min;Hur, Dong-Ryol;Kim, Hai-Jai
    • The Transactions of the Korean Institute of Electrical Engineers P
    • /
    • v.51 no.2
    • /
    • pp.60-67
    • /
    • 2002
  • This paper presents a control approach for designing a self tuning fuzzy controller for a synchronous generator excitation and SVC system. A combination of thyristor-controlled reactors and fixed capacitors (TCR-FC) type SVC is recognized as having the most flexible control and high speed response, which has been widely utilized in power systems, is considered and designed to improve the response of a synchronous generator, as well as controlling the system voltage. The proposed parameter self tuning algorithm of fuzzy controller is based on the steepest decent method using two direction vectors which make error between inference values of fuzzy controller and output values of the specially selected PSS reduce steepestly. Using input-output data pair obtained from PSS, the parameters in antecedent part and in consequent part of fuzzy inference rules are learned and tuned automatically using the proposed steepest decent method. The related simulation results show that the proposed fuzzy controller is more powerful than the conventional ones.

Design of GA-LQ Controller in SVC for Power System Stability Improvement (전력시스템 안정도 향상을 위한 SVC용 GA-LQ 제어기 설계)

  • Hur, D.R.;Park, I.P.;Chung, M.K.;Chung, H.H.;Ahn, B.C.;Kim, H.J.
    • Proceedings of the KIEE Conference
    • /
    • 2002.07a
    • /
    • pp.226-228
    • /
    • 2002
  • This paper presents a new control approach for designing a coordinated controller for static VAR compensator system. A SVC constructed by a Fixed Capacitor and a Thyristor Controlled Reactor is designed and implemented to improve the damping of a synchronous generator, as well as controlling the system voltage. A design of linear quadratic controller based on optimal controller depends on choosing weighting matrices. A coordinated optimal controller is achieved by minimizing a quadratic performance index using dynamic programming techniques. The selection of weighting matrices is usually carried out by trial and error which is not a trivial problem. We proposed a efficient method using GA of finding weighting matrices for optimal control law. Thus, we prove the usefulness of proposed method to improve the stability of single machine-infinite bus with SVC system.

  • PDF

The Controller Design of Bi-directional DC-DC Converter for a Fuel Cell Energy Storage System (연료전지용 커패시터 충.방전을 위한 양방향 DC-DC 컨버터 제어기 설계)

  • Kim, Seung-Min;Yang, Seung-Dae;Choi, Ju-Yeop;An, Jin-Woong;Lee, Sang-Chul;Lee, Dong-Ha
    • 한국태양에너지학회:학술대회논문집
    • /
    • 2012.03a
    • /
    • pp.222-228
    • /
    • 2012
  • This paper presents a design and simulation of bi-directional DC/DC boost converter for a fuel cell system. In this paper, we analyze the equivalent model of both a boost converter and a buck converter. Also we propose the controller of bi-directional DC-DC converter, which has buck mode of charging a capacitor and boost mode of discharging a capacitor. In order to design a controller, we draw bode plots of the control-to-output transfer function using specific parameters and incorporate 3pole-2zero compensator in a closed loop. As a result, it has increased PM(Phase Margin) for better dynamic performance. The proposed bi-directional DC-DC converter's 3pole-2zero compensation method has been verified with computer simulation and simulation results obtained demonstrates the validity of the proposed control scheme.

  • PDF

Four-switch Three-phase Inverter control method applied by simplified Space Vector PWM (간략화 된 SVPWM을 적용한 4-Switch 3-Phase Inverter의 제어 방법)

  • Son, Sang-Hun;Park, Young-Joo;Choy, Ick
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.11 no.3
    • /
    • pp.283-292
    • /
    • 2016
  • The performance of 4-switch 3-phase inverter(: FSTPI) which replace two switches of 6-switch 3-phase inverter(: SSTPI) is mainly affected by the compensator unbalanced voltages and output voltage control method. This paper proposes a DC offset current injection method to compensate the capacitor unbalanced voltages for FSTPI. A simplified SVPWM method which can be applied to FSTPI is also proposed. The validity of the proposed methods is verified by simulation and experiment using SPMSM.

Modeling and Analysis of SEIG-STATCOM Systems Based on the Magnitude-Phase Dynamic Method

  • Wang, Haifeng;Wu, Xinzhen;You, Rui;Li, Jia
    • Journal of Power Electronics
    • /
    • v.18 no.3
    • /
    • pp.944-953
    • /
    • 2018
  • This paper proposes an analysis method based on the magnitude-phase dynamic theory for isolated power systems with static synchronous compensators (STATCOMs). The stability margin of an isolated power system is greatly reduced when a load is connected, due to the disadvantageous features of the self-excited induction generators (SEIGs). To analyze the control process for system stability and to grasp the dynamic characteristics in different timescales, the relationships between the active/reactive components and the phase/magnitude of the STATCOM output voltage are derived in the natural reference frame based on the magnitude/phase dynamic theory. Then STATCOM equivalent mechanical models in both the voltage time scale and the current time scale are built. The proportional coefficients and the integral coefficients of the control process are converted into damping coefficients, inertia coefficients and stiffness coefficients so that analyzing its controls, dynamic response characteristics as well as impacts on the system operations are easier. The effectiveness of the proposed analysis method is verified by simulation and experimental results.

A Development of Intelligent Robust Precision Control System for Power Conversion System using AI (첨단 AI 기법을 이용한 전력 변환기의 고성능 제어기 개발)

  • Ko, Jong-Sun;Lee, Yong-Jae;Kim, Kyu-Gyeom;Han, Hoo-Sek
    • Proceedings of the KIEE Conference
    • /
    • 2001.11b
    • /
    • pp.92-95
    • /
    • 2001
  • This study presents neural load disturbance observer that used to deadbeat load torque observer and regulation of the compensation gain by parameter estimator. As a result, the response of PMSM fellows that of the nominal plant. The load torque compensation method is compose of a neural deadbeat observer. To reduce of the noise effect, the post-filter, which is implemented by MA process, is proposed. The parameter compensator with RLSM(recursive least square method) parameter estimator is suggested to increase the performance of the load torque observer and main controller. The proposed estimator is combined with a high performance neural torque observer to resolve the problems. As a result, the proposed control system becomes a robust and precise system against the load torque and the parameter variation. A stability and usefulness, through the verified computer simulation, are shown in this paper.

  • PDF

the power flow control and voltage compensation by 20kVA prototype UPFC (20kVA급 Prototype UPFC의 전력조류제어와 모선전압보상)

  • Jeon, Jin-Hong;Kim, Ji-Won;Chun, Yeung-Han;Kim, Hak-Man;Kook, Kyung-Soo;Oh, Tae-Kyoo
    • Proceedings of the KIEE Conference
    • /
    • 2001.04a
    • /
    • pp.349-352
    • /
    • 2001
  • FACTS technology is developed into the sophisticated system technology which combines conventional power system technology with power electronics, micro-process control, and information technology. Its objectives are achieving enhancement of the power system flexibility and maximum utilization of the power transfer capability through improvements of the system reliability, controllability, and efficiency [1]. As a series and shunt compensator, UPFC consists of two inverters with common dc link capacitor bank. It controls the magnitude of shunt bus voltage and real and reactive power flow of transmission line[2]. In this paper, we present the design, implementation and test results of developed 20kVA level prototype UPFC. It is applied to power system simulator and controls the real and reactive power flow and shunt bus voltage magnitude.

  • PDF