• Title/Summary/Keyword: Control co-simulation

Search Result 726, Processing Time 0.026 seconds

Static Filtering Probability Control Method Based on Reliability of Cluster in Sensor Networks (센서 네트워크에서 클러스터 신뢰도 기반 정적 여과 확률 조절 기법)

  • Hur, Suh-Mahn;Seo, Hee-Suk;Lee, Dong-Young;Kim, Tae-Kyung
    • Journal of the Korea Society for Simulation
    • /
    • v.19 no.1
    • /
    • pp.161-171
    • /
    • 2010
  • Sensor Networks are often deployed in unattended environments, thus leaving these networks vulnerable to false data injection attacks in which an adversary injects forged reports into the network through compromised nodes. Such attacks by compromised sensors can cause not only false alarms but also the depletion of the finite amount of energy in a battery powered network. Ye et al. proposed the Statistical En-route Filtering scheme to overcome this threat. In statistical en-route filtering scheme, all the intermediate nodes perform verification as event reports created by center of stimulus node are forwarded to the base station. This paper applies a probabilistic verification method to the Static Statistical En-route Filtering for energy efficiency. It is expected that the farther from the base station an event source is, the higher energy efficiency is achieved.

Control and Design of a Arc Power Supply for KSTAR's the Neutral Beam Injection

  • Ryu, Dong-Kyun;Lee, Hee-Jun;Lee, Jung-Hyo;Won, Chung-Yuen
    • Journal of Electrical Engineering and Technology
    • /
    • v.10 no.1
    • /
    • pp.216-226
    • /
    • 2015
  • The neutral beam injection generate ultra-high temperature energy in the tokamak of nuclear fusion. The neutral beam injection make up arc power supply, filament power supply and acceleration & deceleration power supply. The arc power supply has characteristics of low voltage and high current. Arc power supply generate arc through constant output of voltage and current. So this paper proposed suitable buck converter for low voltage and high current. The proposed buck converter used parallel switch because it can be increased capacity and decrease conduction loss. When an arc generated, the neutral beam injection chamber occur high voltage. And it will break output capacitor of buck converter. Therefore the output capacitor was removed in the proposed converter. Thus the proposed converter should be designed for the characteristics of low voltage and high current. Also, the arc power supply should be guaranteed for system stability. The proposed parallel buck converter enables the system stability of the divided low output voltage and high current. The proposed converter with constant output be the most important design of the output inductor. In this paper, designed arc power supply verified operation of system and stability through simulation and prototype. After it is applied to the 288[kW] arc power supply for neutral beam injection.

Hybrid Scheduling Algorithm based on DWDRR using Hysteresis for QoS of Combat Management System Resource Control

  • Lee, Gi-Yeop
    • Journal of the Korea Society of Computer and Information
    • /
    • v.25 no.1
    • /
    • pp.21-27
    • /
    • 2020
  • In this paper, a hybrid scheduling algorithm is proposed for CMS(Combat Management System) to improve QoS(Quality of Service) based on DWDRR(Dynamic Weighted Deficit Round Robin) and priority-based scheduling method. The main proposed scheme, DWDRR is method of packet transmission through giving weight by traffic of queue and priority. To demonstrate an usefulness of proposed algorithm through simulation, efficiency in special section of the proposed algorithm is proved. Therefore, We propose hybrid algorithm between existing algorithm and proposed algorithm. Also, to prevent frequent scheme conversion, a hysteresis method is applied. The proposed algorithm shows lower packet loss rate and delay in the same traffic than existing algorithm.

Quasi-distributed Interference Coordination for HSPA HetNet

  • Zhang, Chi;Chang, Yongyu;Qin, Shuqi;Yang, Dacheng
    • ETRI Journal
    • /
    • v.36 no.1
    • /
    • pp.31-41
    • /
    • 2014
  • The heterogeneous network (HetNet) has been discussed in detail in the Long-Term Evolution (LTE) and LTE Advanced standards. However, the standardization of High-Speed Packet Access HetNet (HSPA HetNet) launched by 3GPP is pushing at full steam. Interference coordination (IC), which is responsible for dealing with the interference in the system, remains a subject worthy of investigation in regard to HSPA HetNet. In this paper, considering the network framework of HSPA HetNet, we propose a quasi-distributed IC (QDIC) scheme to lower the interference level in the co-channel HSPA HetNet. Our QDIC scheme is constructed as slightly different energy-efficient non-cooperative games in the downlink (DL) and uplink (UL) scenarios, respectively. The existence and uniqueness of the equilibrium for these games are first revealed. Then, we derive the closed-form best responses of these games. A feasible implementation is finally developed to achieve our QDIC scheme in the practical DL and UL. Simulation results show the notable benefits of our scheme, which can indeed control the interference level and enhance the system performance.

Rotor Resistance Estimation Using Slip Angular Velocity In Vector-Controlled Induction Motor (벡터제어 유도전동기의 슬립 각속도를 이용한 회전자 저항 추정)

  • Park, Hyunsu;Jo, Gwon-Jae;Choi, Jong-Woo
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.67 no.10
    • /
    • pp.1308-1316
    • /
    • 2018
  • Accurate tuning of parameter is very important in vector-controlled induction motor. Among the parameters of induction motor, detuning of rotor resistance used in controller design deteriorates drive performance. This paper presents a novel rotor resistance estimation strategy using slip angular velocity in vector-controlled induction motor drives. The slip angular velocity can be calculated by two methods. Firstly, it can be induced from the rotor voltage equation. Secondly, it can be induced from the difference between synchronous angular velocity and rotor angular velocity. The first method includes the rotor resistance, while the second method dose not include this parameter. From this fact, the rotor resistance can be identified by comparing the slip angular velocities in the two methods. In the tuned states of the rotor resistance, performances of flux estimator and speed drive are discussed. The simulation and experimental results are given to verify the validity of the proposed method in various situations.

Position Detecting Modeling of Linear Switched Reluctance Motor(LSRM) for Railway Vehicles (철도차량용 선형전동기(LSRM) 위치검출 모델링)

  • Yoon, Yong-Ho
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.65 no.11
    • /
    • pp.1907-1912
    • /
    • 2016
  • In fact, in order to obtain good performances and low torque ripple, a high-resolution sensor is needed, which is costly and usually needs a special construction for the machine. So researchers are becoming aware of their cost and are exploring the possibility of cost reduction. Information of rotor position is necessary to drive Linear Switched Reluctance Motor(LSRM). Therefore, linear optical encoder is used to detect a mover position. Normally, since the price of encoder, which is used for linear motor is relatively higher than the one used for rotory motor and the cost of additional equipment increases with the length of motor. This is not always appropriate, considering economical efficiency in case of using the linear optical encoder. As a results, LSRM has a great part for the total cost. Therefore, in this paper, we propose LSRM position detecting modeling with reflective type photo-sensor. Additionally, we have investigated the possibility of the reduced position sensor for LSRM drives with advanced control technique. To certify the overall characteristics of the proposed method, a simulation using PSIM software has been carried out and the informative results are displayed.

Power Balancing Control Method of A Residential Distributed Generation System using Photovoltaic Power Generation and Polymer Electrolyte Fuel Cells (PV와 PEFC를 병용한 가정용 분산 전원 시스템의 전력평준화 제어법)

  • Yoon, Young-Byun;Mun, Sang-Pil;Park, Han-Seok;Woo, Kyung-Il
    • The Transactions of the Korean Institute of Electrical Engineers P
    • /
    • v.65 no.4
    • /
    • pp.335-339
    • /
    • 2016
  • Output power in photovoltaic systems changes steeply with the change of the sun intensity. The change of output power has influence on the electric power quality of the system. This paper proposes a residential distributed generation system using photovoltaic power generation and polymer electrolyte fuel cells(hybrid systems). In order to level the output power which changes steeply the polymer electrolyte fuel cells are connected to the photovoltaic power generation system in parallel. Thus the generated power of all the system can be leveled. However, the steep generated power in the photovoltaic power generation system can not be leveled. Therefore, the electric double layer capacitor(EDLC) is connected in parallel with the hybrid systems. It is confirmed by the simulation that the proposed distributed generation system is available for a residential supply.

Development of a Virtual Machine Tool-Part 4: Mechanistic Cutting Force Model, Machined Surface Error Model, and Feed Rate Scheduling Model

  • Yun, Won-Soo;Ko, Jeong-Hoon;Cho, Dong-Woo
    • International Journal of Precision Engineering and Manufacturing
    • /
    • v.4 no.2
    • /
    • pp.71-76
    • /
    • 2003
  • A virtual machine tool (VMT) is presented in this two-part paper. In Part 1, the analytical foundation for a virtual machining system is developed, which is envisioned as the foundation for a comprehensive simulation environment capable of predicting the outcome of cutting processes. The VHT system undergoes "pseudo-real machining", before actual cutting with a CNC machine tool takes place, to provide the proper cutting conditions for process planners and to compensate or control the machining process in terms of the productivity and attributes of the products. The attributes can be characterized by the machined surface error, dimensional accuracy, roughness, integrity, and so forth. The main components of the VMT are the cutting process, application, thermal behavior, and feed drive modules. In Part 1, the cutting process module is presented. When verified experimentally, the proposed models gave significantly better prediction results than any other methods. In Part 2 of this paper, the thermal behavior and feed drive modules are developed, and the models are integrated into a comprehensive software environment.vironment.

Incorporating magneto-Rheological damper into riser tensioner system to restrict riser stroke in moderate-size semisubmersibles

  • Zainuddin, Zaid;Kim, Moo-Hyun;Kang, Heon-Yong;Bhat, Shankar
    • Ocean Systems Engineering
    • /
    • v.8 no.2
    • /
    • pp.101-118
    • /
    • 2018
  • In case of conventional shallow-draft semisubmersibles, unacceptably large riser stroke was the restricting factor for dry-tree-riser-semisubmersible development. Many attempts to address this issue have focused on using larger draft and size with extra heave-damping plates, which results in a huge cost increase. The objective of this paper is to investigate an alternative solution by improving riser systems through the implementation of a magneto-rheological damper (MR Damper) so that it can be used with moderate-size/draft semisubmersibles. In this regard, MR-damper riser systems and connections are numerically modeled so that they can couple with hull-mooring time-domain simulations. The simulation results show that the moderate-size semisubmersible with MR damper system can be used with conventional dry-tree pneumatic tensioners by effectively reducing stroke-distance even in the most severe (1000-yr) storm environments. Furthermore, the damping level of the MR damper can be controlled to best fit target cases by changing input electric currents. The reduction in stroke allows smaller topside deck spacing, which in turn leads to smaller deck and hull. As the penalty of reducing riser stroke by MR damper, the force on the MR-damper can significantly be increased, which requires applying optimal electric currents.

A Numerical Investigation of Effects of Methanol Concentration Fluctuation in Active-type Direct Methanol Fuel Cell (DMFC) Systems (액티브형 직접메탄올연료전지 시스템의 메탄올 농도 변동이 성능에 미치는 영향성에 대한 수치적 연구)

  • Gwak, Geonhui;Ko, Johan;Lee, Suwon;Lee, Jinwoo;Peck, Donghyun;Jung, Doohwan;Ju, Hyunchul
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.24 no.6
    • /
    • pp.495-509
    • /
    • 2013
  • In this study, we develop a one-dimensional (1-D), two-phase, transient-thermal DMFC model to investigate the effect of methanol concentration fluctuation that usually occurs in active-type direct methanol fuel cell (DMFC) systems. 1-D transient simulations are conducted and time-dependent behaviors of DMFCs are analyzed under various DMFC operating conditions such as anode/cathode stoichiometry, cell temperature, and cathode inlet humidification. The simulation results indicate that the effect of methanol concentration fluctuation on DMFC performance can be mitigated by proper control of anode/cathode stoichiometry, providing a guideline to optimize operating conditions of active DMFC systems.