• 제목/요약/키워드: Control co-simulation

Search Result 728, Processing Time 0.036 seconds

New Overmodulation strategy for Propulsion system of the Light Rail Transit (경량전철용 추진제어장치의 새로운 과변조 기법)

  • Lee, Eun-Kyu;Choi, Jae-Ho
    • Proceedings of the KIEE Conference
    • /
    • 2003.04a
    • /
    • pp.194-199
    • /
    • 2003
  • The traction drive system for the urban transit Rubber-tire system is described in this paper. To control the magnitude and frequency of the output voltage of induction motor transiently, the vector control strategy is generally used. But in case of the traction drive system for the railway vehicle, it is difficult to use the vector control caused by the one-pulse mode in the high speed region. Therefore, this paper proposes the control strategy combined the vector control in the low speed region and the slip frequency control in the high speed region. And also, the overmodulation PWM method is discussed to make the change to the one-pulse mode softly. The performance of the Proposed traction drive system is verified by the MATLAB simulation results.

  • PDF

Coordination Control of Multiple Electrical Excited Synchronous Motors and Its Application in High-Power Metal-Rolling Systems

  • Shang, Jing;Nian, Xiaohong;Liu, Yong
    • Journal of Power Electronics
    • /
    • v.16 no.5
    • /
    • pp.1781-1790
    • /
    • 2016
  • This study focuses on the coordination control problem of multiple electrical excited synchronous motor systems. A robust coordination controller is designed on the basis of cross coupling and an interval matrix. The proposed control strategy can deal with load uncertainty. In addition, the proposed control strategy is applied to a high-power metal-rolling system. Simulation and experiment results demonstrate that the proposed control strategy achieves good dynamic and static performance. It also shows better coordination performance than traditional proportional-integral controllers.

Cross-Layer Resource Allocation in Multi-interface Multi-channel Wireless Multi-hop Networks

  • Feng, Wei;Feng, Suili;Zhang, Yongzhong;Xia, Xiaowei
    • ETRI Journal
    • /
    • v.36 no.6
    • /
    • pp.960-967
    • /
    • 2014
  • In this paper, an analytical framework is proposed for the optimization of network performance through joint congestion control, channel allocation, rate allocation, power control, scheduling, and routing with the consideration of fairness in multi-channel wireless multihop networks. More specifically, the framework models the network by a generalized network utility maximization (NUM) problem under an elastic link data rate and power constraints. Using the dual decomposition technique, the NUM problem is decomposed into four subproblems - flow control; next-hop routing; rate allocation and scheduling; power control; and channel allocation - and finally solved by a low-complexity distributed method. Simulation results show that the proposed distributed algorithm significantly improves the network throughput and energy efficiency compared with previous algorithms.

3-Axis Gyro Sensor based on Servo Motion Control System (3-Axis Gyro Sensor based on Servo Motion Control 시스템 개발)

  • Sun, Nana;Lee, Won-Bu;Park, Soo-Hong
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2010.05a
    • /
    • pp.725-727
    • /
    • 2010
  • For simulation of Boat motion, pitch, motion element of roll and yaw direction could simulated. The combination of the marine use various multi sensor surveillance system technology with the development of servo motion control algorithm and gyro sensor in six freedom motion is implemented to analyze the movement response. The stabilization of the motion control is developed and Nano driving Precision Pan-Tilt/Gimbal system is obtained from the security positioning cameras with ultra high speed device is used to carry out the exact behavior of the device.

  • PDF

Improved Transient Response of Distributed Energy Resources Inverters to PQ Control using Decoupling (분산전원용 인버터의 유효 무효전력 감결합을 통한 PQ제어 과도상태 특성개선)

  • Choi, Chul-Hoon;Choi, Jong-Woo;Lee, Chang-Hee
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.17 no.5
    • /
    • pp.438-444
    • /
    • 2012
  • This paper deals with the active and reactive power control of Grid connected system. It was shown that active power and reactive power can be dependently controlled with two individually adaptable parameters. The two parameters are power angle and voltage magnitude. Transient state will occur with active or reactive power reference value variation. This paper presents a new control strategy for active and reactive power control of less interaction and improved transient response. The paper details the control technique by the mathematical and electrical network analysis of the methodology. The performance was verified through computer simulation using MATLAB Simulink and experiment.

A Study on Performance Analysis and Hydraulic Control System Design of Forklift Structure Manipulator with 5 Joints for Untact Working in Limited Environment (극한 환경에서의 비대면 작업을 위한 소비자 친화형 포크리프트 구조의 5축 매니퓰레이터의 유압제어 시스템 설계 및 성능분석에 대한 연구)

  • Kim, Hee jin;Kim, Sung il;Han, Sung hyun;Yoon, Kyeong hwa
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.25 no.3
    • /
    • pp.477-491
    • /
    • 2022
  • This study proposed the performance analysis and hydraulic control system design of forklift structure manipulator with 5 joints for untact working in lilited environment. The performance analysis of the control system analyzed the control response to load and pressure fluctuations. The reliability of proposed control system was verified by simulation test under the various condition.

Design of a DSP-Based Adaptive Controller for Real Time Dynamic Control of AM1 Robot

  • S. H. Han;K. S. Yoon;Lee, M. H.;Kim, S. K.
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1998.10a
    • /
    • pp.100-104
    • /
    • 1998
  • This paper describes the real-time implementation of an adaptive controller fur the robotic manipulator. Digital signal processors(DSPs) are special purpose micro-processors that are particularly powerful for intensive numerical computations involving sums and products of variables. TMS320C50 chips are used in implementing real time adaptive control algorithms to provide an enhanced motion for robotic manipulators. In the proposed scheme, adaptation laws are derived from the improved Lyapunov second stability analysis based on the direct adaptive control theory. The adaptive controller consists of an adaptive feedforward controller and feedback controller. The proposed control scheme is simple in structure, fast in computation, and suitable for real-time control. Moreover, this scheme does not require any accurate dynamic modeling, nor values of manipulator parameters and payload. Performance of the adaptive controller is illustrated by simulation and experimental results for a assembling robot.

  • PDF

Experiment Investigation on Fluid Transportation Performance of Propellant Acquisition Vanes in Microgravity Environment

  • Zhuang, Baotang;Li, Yong;Luo, Xianwu;Pan, Halin;Ji, Jingjing
    • International Journal of Fluid Machinery and Systems
    • /
    • v.7 no.1
    • /
    • pp.1-6
    • /
    • 2014
  • The propellant acquisition vane (PAV) is a key part of a vane type surface tension propellant management device (PMD), which can manage the propellant effectively. In the present paper, the fluid transportation behaviors for five PAVs with different sections were investigated by using microgravity drop tower test. Further, numerical simulation for the propellant flow in a PMD under microgravity condition was also carried out based on VOF model, and showed the similar flow pattern for PAVs to the experiment. It is noted that the section geometry of PAVs is one of the main factors affecting the fluid transportation behavior of PMD. PAVs with bottom length ratio of 5/6 and 1/2 have larger propellant transportation velocity. Based on the experiments, there were two stages during the process of propellant transportation under microgravity environment: liquid relocation and steady transportation stage. It is also recognized that there is a linear correlation between liquid transportation velocity and relative time's square root. Those results can not only provide a guideline for optimization of new vane type PMDs, but also are helpful for fluid control applications in space environment.

Simulation and Control of the Molten Carbonate System using Aspen $Dynamics^{TM}$ and ACM (Aspen $Dynamics^{TM}$와 ACM을 이용한 용융탄산염 연료전지 시스템의 모사 및 제어)

  • Jeon, Kyoung Yein;Kwak, Ha Yeon;Kyung, Ji Hyun;Yoo, Ahrim;Lee, Tae Won;Lee, Gi Pung;Moon, Kil Ho;Yang, Dae Ryook
    • Korean Chemical Engineering Research
    • /
    • v.49 no.4
    • /
    • pp.423-431
    • /
    • 2011
  • Recentincreasing awareness of the environmental damage caused by the $CO_2$ emission of fossil fuelsstimulated the interest in alternative and renewable sources of energy. Fuel cell is a representative example of hydrogen energy utilization. In this study, Molten Carbonate Fuel Cell system is simulated by using $Aspen^{TM}$. Stack model is consisted of equilibrium reaction equations using $ACM^{TM}$(Aspen Custom Modeler). Balance of process of fuel cell system is developed in Aspen $Plus^{TM}$ and simulated at steady-state. Analysis of performance of the system is carried out by using sensitivity analysis tool with main operating parameters such as current density, S/C ratio, and fuel utilization and recycle ratio.In Aspen $Dynamics^{TM}$, dynamics of MCFC system is simulated with PID control loops. From the simulation, we proposed operation range which generated maximum power and efficiency in MCFC power plant.

Simulation Based Design of Intelligent Surveillance Robot for Mobility (모바일화를 위한 지능형 경계로봇의 시뮬레이션기반 설계)

  • Hwang, Ki-Sang;Kim, Do-Hyun;Park, Kyu-Jin;Park, Sung-Ho;Kim, Sung-Soo
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.32 no.4
    • /
    • pp.340-346
    • /
    • 2008
  • An unmanned surveillance robot consists of a machine gun, a laser receiver, a thermal imager, a color CCD camera, and a laser illuminator. It has two axis control systems for elevation and azimuth. Because the current robot system is mounded at a fixed post to take care of surveillance tasks, it is necessary to modify such a surveillance robot to be installed on an UGV (Unmanned Ground Vehicle) system in order to watch blind areas. Thus, it is required to have a stabilization system to compensate the disturbance from the UGV. In this paper, a simulation based design scheme has been adopted to develop a mobile surveillance robot. The 3D CAD geometry model has first been produced by using Pro-Engineer. The required pan and tilt motor capacities have been analyzed using ADAMS inverse dynamics analysis. A target tracking and stabilization control algorithm of the mobile surveillance robot has been developed in order to compensate the motion of the vehicle which will experience the rough terrain. To test the performance of the stabilization control system of the robot, ADAMS/simulink co-simulations has been carried out.