• Title/Summary/Keyword: Control arm

Search Result 1,243, Processing Time 0.03 seconds

Design of Electronic Control Unit for Parking Assist System (주차 보조 시스템을 위한 ECU 설계)

  • Choi, Jin-Hyuk;Lee, Seongsoo
    • Journal of IKEEE
    • /
    • v.24 no.4
    • /
    • pp.1172-1175
    • /
    • 2020
  • Automotive ECU integrates CPU core, IVN controller, memory interface, sensor interface, I/O interface, and so on. Current automotive ECUs are often developed with proprietary processor architectures. However, demends for standard processors such as ARM and RISC-V increase rapidly for saftware compatibility in autonomous vehicles and connected cars. In this paper, an automotive ECU is designed for parking assist system based on RISC-V with open instruction set architecture. It includes 32b RISC-V CPU core, IVN controllers such as CAN and LIN, memory interfaces such as ROM and SRAM, and I/O interfaces such as SPI, UART, and I2C. Fabricated in 65nm CMOS technology, its operating frequency, area, and gate count are 50MHz, 0.37㎟, and 55,310 gates, respectively.

A Study on the Dynamic Analysis for Flexible Robotic Arms (유연 로보트팔의 동특성 해석에 관한 연구)

  • Kim, Chang-Boo;You, Young-Sun
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.10 no.3
    • /
    • pp.107-116
    • /
    • 1993
  • In the design and operation of robitic arm with flexible links, the equation of motion are required to exactly model the interaction between rigid body motion and elastic motion and to be formulated efficientlyl. In this paper, the flexible link is represented by applying the D-H rigid link representation method to measure the elestic deformation. And the equations of motion of robotic arm, which are configured by the generalized coordinates of elastic and rigid degrees of freedom, are formulated from the principle of virtual power. Dynamic characteristics due to elastic deformation of each link are obtained by using F. E. M to model complex shaped link acurately and by eliminating elastic modes of higher order that do not largely affect motion to reduce the number of elastic degrees of freedom. Also presented is the result of simulation of flexible robotic arms whose joints are controlled by direct or PD control.

  • PDF

Robust Backstepping Control Using Time Delay Estimation (시간 지연 추정을 이용한 강인 Backstepping 제어)

  • Kim, Seong-Tae;Chang, Pyung-Hun;Kang, Sang-Hoon
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.28 no.12
    • /
    • pp.1833-1844
    • /
    • 2004
  • A controller is proposed for the robust backstepping control of a class of nonlinear multiple-input multiple-output (MIMO) systems which can be converted to a strict feedback form. The proposed robust backstepping control scheme follows a systematic procedure for the design of control laws and uses time delay estimation (TDE) to estimate the uncertainties such as parameter variations, unknown disturbances, and unmodeled dynamics, etc. The proposed controller can be also applied to nonlinear MIMO systems with unmatched uncertainties. Stability analysis of the closed-loop system which contains the plant and the proposed controller is also studied and hereby a sufficient stability condition for the closed-loop system is proposed. The simulation results show that the control scheme works well with uncertainties and the proposed stability condition is valid. The controller is experimentally verified on a single-link flexible arm to show the effectiveness of the proposed scheme in the complicated systems with uncertainties.

Application of Tactile Slippage Sensation Algorithm in Robot Hand Control System

  • Yussof, Hanafiah;Jaffar, Ahmed;Zahari, Nur Ismarrubie;Ohka, Masahiro
    • Journal of Korea Society of Industrial Information Systems
    • /
    • v.17 no.4
    • /
    • pp.9-15
    • /
    • 2012
  • This paper presents application of a new tactile slippage sensation algorithm in robot hand control system. The optical three-axis tactile sensor is a type of tactile sensor capable of defining normal and shear forces simultaneously. The tactile sensor is mounted on fingertip of robotic hand. Shear force distribution is used to define slippage sensation in the robot hand system. Based on tactile slippage analysis, a new control algorithm was proposed. To improve performance during object handling motions, analysis of slippage direction is conducted. The control algorithm is classified into two phases: grasp-move-release and grasp-twist motions. Detailed explanations of the control algorithm based on the existing robot arm control system are presented. The experiment is conducted using a bottle cap, and the results reveal good performance of the proposed control algorithm to accomplish the proposed object handling motions.

The Effects of Body Weight Control Program for Obese Children (비만아동을 위한 체중조절 프로그램의 효과)

  • Kim, Kyung-Hee
    • Journal of the Korean Society of Food Culture
    • /
    • v.16 no.2
    • /
    • pp.89-98
    • /
    • 2001
  • The purpose of this study was to investigate the effects of body weight control program for obese children. The program included nutrition education, exercise and behavioral therapy for 20 weekly sessions. The results from this study were as follows. The average age of the subjects was 11.3 years, mean height and weight were 146.12cm and 59.42kg respectively. After weight control preogram, Rohrer index(Rl) was significantly decreased from 186.78 to 182.72(p<0.001). There were not significant differences in body fat percent(%) and fat weight(kg) but it showed decreased pattern. In the change of body circumferences, chest circumference was significantly increased(p<0.01) and mid-arm circumference was significantly decreased(p<0.001) after weight control program. Triglyceride(TG) level in serum was significantly decreased from 113.79 to 80.36(p<0.01) and total cholesterol and LDL-cholesterol level showed declind pattern. The food habits of obese children significantly improved(p<0.001) after weight control prgram. And there were desirable changes of food attitude, excercise and life habits. These results suggest that weight control program including nutrition education, exercise and behavioral therapy may be effective for helping obese children.

  • PDF

Accurate Control Position of Belt Drives under Acceleration and Velocity Constraints

  • Jayawardene, T.S.S.;Nakamura, Masatoshi;Goto, Satoru
    • International Journal of Control, Automation, and Systems
    • /
    • v.1 no.4
    • /
    • pp.474-483
    • /
    • 2003
  • Belt drives provide freedom to position the motor relative to the load and this phenomenon enables reduction of the robot arm inertia. It also facilitates quick response when employed in robotics. Unfortunately, the flexible dynamics deteriorates the positioning accuracy. Therefore, there exists a trade-off between the simplicity of the control strategy to reject time varying disturbance caused by flexibility of the belt and precision in performance. Resonance of the system further leads to vibrations and poor accuracy in positioning. In this paper, accurate positioning of a belt driven mechanism using a feed-forward compensator under maximum acceleration and velocity constraints is proposed. The proposed method plans the desired trajectory and modifies it to compensate delay dynamics and vibration. Being an offline method, the proposed method could be easily and effectively adopted to the existing systems without any modification of the hardware setup. The effectiveness of the proposed method was proven by experiments carried out with an actual belt driven system. The accuracy of the simulation study based on numerical methods was also verified with the analytical solutions derived.

Robust Force Control of a 6-Link Electro-Hydraulic Manipulator (전기 유압 매니플레이터의 강건 힘 제어)

  • Ahn, Kyoung-Kwan;Cho, Yong-Rae;Yang, Soon-Yong;Lee, Byung-Ryong
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.19 no.4
    • /
    • pp.202-208
    • /
    • 2002
  • An electro-hydraulic manipulator using hydraulic actuators has many nonlinear elements, and its parameter fluctuations are greater than those of an electrically driven manipulator. So it is relatively difficult to realize not only stable contact work but also accurate force control for the autonomous assembly tasks using hydraulic manipulators. In this report, we applied a compliance control which is based on the position control by a disturbance observer for our manipulator system. And a reference trajectory modification method is proposed in order to achieve accurate force control even though the stiffness and position of environment change. Experimental results show that highly robust force tracking by a 6-link electro-hydraulic manipulator could be achieved under various environment conditions.

A Study on Real-Time Trajectory Tracking Control of SCARA Robot with Four Joints Based on Visual Feedback (영상 피드백에 의한 4축 스카라 로봇의 실시간 궤적추적제어에 관한 연구)

  • Jung, Yang-Guen;Shim, Hyun-Seok;Lee, Woo-Song;Han, Sung-Hyun
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.17 no.3
    • /
    • pp.136-144
    • /
    • 2014
  • This paper proposes a new approach to the designed of visual feedback control system based on visual servoing method. The main focus of this paper is presents how it is effective to use many features for improving the accuracy of the visual feedback control of industrial articulated robot for assembling and inspection of parts. Some rank conditions, which relate the image Jacobian, and the control performance are derived. It is also proven that the accuracy is improved by increasing the number of features. The effectiveness of redundant features is verified by the real time experiments on a SCARA type robot(FARA) made in samsung electronics company.

A Study on Modeling of Pneumatic System for an IDC Device (IDC장치에 대한 공압시스템의 모델링에 관한 연구)

  • Nguyen, C.T.;Le, Q.H.;Jeong, Y.M.;Yang, S.Y.
    • Journal of Drive and Control
    • /
    • v.12 no.3
    • /
    • pp.11-17
    • /
    • 2015
  • An intelligent deburring control (IDC) device is used to control the constant force for a deburring tool mounted on the end-effector of a robotic arm. This device maintains a constant contact force between the deburring tool and the workpiece in order to provide a good deburring performance. In this paper, we build a mathematical model in Matlab/Simulink to estimate the force control mechanism of the pneumatic system for the IDC device. The Simulink blocks are built for each separate part and are linked into an integrated simulation system. Such a model also relies on the effects of the flow rate through the valve, air compressibility in the cylinder, and time delay in the pressure valve. The results of the simulation are compared to a simple experiment in which convenient math modeling is performed. These results are then used to optimize the mechanical design and to develop a force control algorithm for the pneumatic cylinder.

A Study on Dynamics Analysis and Position Control of 5 D.O.F. Multi-joint Manipulater for Uncontact Remote Working (원격작업을 위한 5자유도 다관절 매니퓰레이터의 동특성 분석 및 위치제어에 관한 연구)

  • Kim, Hee-Jin;Jang, Gi-Wong;Kim, Seong-Il;Han, Sung-Hyun
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.25 no.1
    • /
    • pp.87-99
    • /
    • 2022
  • We propoes a study on the dynamic characteristics analysis and position control of 5-degree multi-joint manipulators for untact remote working at construction sites and manufacturing plants. The main frame of freedom multi-joint manipulator consists of five elements, boom cylinder, boom cylinder, arm cylinder, bucket cylinder, and rotation joint and link. In addition, the main purpose of the proposed system is to realize the work of the manufacturing process or construction site by remote control. Motion control of the entire system is a servo valve control method by hydraulic servo cylinders for one to four joints, and a servo motor control method is applied for five joints. The reliability of the proposed method was verified through performance experiments by computer simulation.