• Title/Summary/Keyword: Control arm

Search Result 1,243, Processing Time 0.037 seconds

Novel Multi-Level PWM Inverter Using The Common Arm (공통암을 이용한 새로운 다중레벨 PWM 인버터)

  • .Song S.G;Yu tao;Lee S.H.;Cho S.E.;Moon C.J.;Kim C.U;Park S.J.
    • The Transactions of the Korean Institute of Electrical Engineers B
    • /
    • v.54 no.4
    • /
    • pp.195-200
    • /
    • 2005
  • In this paper, we proposed the electric circuit using one common arm of H-Bridge Inverters to reduce the number of switching component in multi-level inverter combined with H-Bridge Inverters and Transformers. and furthermore we suggested the new multi-level PWM inverter using PWM level to reduce THD(Total Harmonic Distortion). and we used the switching method that can be same rate of usage at each transformer. Also, we tested the proposed prototype 9-level inverter to clarify the proposed electric circuit and reasonableness of control signal for the proposed multi-level PWM inverter.

Numerical evaluation of risk rates for contamination sources in a minienvironment (클린룸 국소환경에서 오염원의 위험율에 대한 수치해석적 평가)

  • Noh, Kwang-Chul
    • Particle and aerosol research
    • /
    • v.14 no.4
    • /
    • pp.181-189
    • /
    • 2018
  • In this study, the risk rates of different contamination sources of the contaminant in a minienvironment were analyzed through Computational Fluid Dynamics (CFD) simulation. The airflow pattern characteristics can only predict the qualitative variation of contaminant concentration, but cannot evaluate the quantitative variations in the risk rate of sources. From the results, the ambient contamination sources mainly affect wafers in the Front Opening Unified Pod (FOUP), whereas the internal contamination sources mainly affect wafers laid on the robot arm in the minienvironment. And the purging plenum system is very useful in protecting the wafers in the FOUP from contaminants transferred from the Fan Filter Unit (FFU). However, this system is unable to protect the wafers on the robot arm from internal contaminants and the wafers in the FOUP from sources of the interface between the FOUP and the minienvironment.

Vibration Suppression control for an Articulated Robot: Effects of Model-Based Control Applied to a Waist Axis

  • Collier, T.;Itoh, Masahiko
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2001.10a
    • /
    • pp.31.4-31
    • /
    • 2001
  • This paper deals with a control technique of eliminating the transient vibration of a waist axis of an articulated robot. This technique is based on a model-based control in order to establish the damping effect on the mechanical part. The control model is composed of reduced-order electrical and mechanical parts. This model estimates a load speed converted to the motor shaft. The difference between the estimated load speed and the motor speed is calculated dynamically and is added to the velocity command to suppress the transient vibration of a waist axis of the arm. This control model is easily obtained from design or experimental data and can be easily integrated into a DSP. This control technique is applied to a waist axis of an articulated robot composed of a harmonic drive ...

  • PDF

Neurocontrol architecture for the dynamic control of a robot arm (로보트 팔의 동력학적제어를 위한 신경제어구조)

  • 문영주;오세영
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1991.10a
    • /
    • pp.280-285
    • /
    • 1991
  • Neural network control has many innovative potentials for fast, accurate and intelligent adaptive control. In this paper, a learning control architecture for the dynamic control of a robot manipulator is developed using inverse dynamic neurocontroller and linear neurocontroher. The inverse dynamic neurocontrouer consists of a MLP (multi-layer perceptron) and the linear neurocontroller consists of SLPs (single layer perceptron). Compared with the previous type of neurocontroller which is using an inverse dynamic neurocontroller and a fixed PD gain controller, proposed architecture shows the superior performance over the previous type of neurocontroller because linear neurocontroller can adapt its gain according to the applied task. This superior performance is tested and verified through the control of PUMA 560. Without any knowledge on the dynamic model, its parameters of a robot , (The robot is treated as a complete black box), the neurocontroller, through practice, gradually and implicitly learns the robot's dynamic properties which is essential for fast and accurate control.

  • PDF

External Force Control for Two Dimensional Contour Following ; Part 1. A Linear Control Approach

  • Park, Young-Chil;Kim, Sungkwun
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1992.10b
    • /
    • pp.130-134
    • /
    • 1992
  • The ability of a robot system to comply to an environment via the control of tool-environment interaction force is of vital for the successful task accomplishment in many robot application. This paper presents the implementation of external force control for two dimensional contour following task using a commercial robot system. Force accommodation is used since a constraint imposed in our work is not to modify the commercial robot system. A linear, decoupled model of two dimensional contour following system in the discrete time domain is derived first. Then the experimental verification of linear control is obtained using a PUMA 560 manipulator with standard Unimation controller, Astek FS6-120A six axis wrist force sensor attached externally to the arm and LSI-11173 microcomputer. Experimentally obtained data shows that the RMS contact force error is 0.8246 N when following the straight edge and 2.3768 N when following 40 mm radius curved contour.

  • PDF

ADAPTIVE SLICING ODE CONTROL USING FUZZY LOGIC SYSTEM

  • Yoo, Byungkook;Jeoung, Sacheul;Ham, Woonchul
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1995.10a
    • /
    • pp.26-30
    • /
    • 1995
  • In this study, the fuzzy approximator and sliding mode control (SMC) scheme are considered. An adaptive sliding mode control is proposed based on the SMC theory. This proposed control scheme is that a adaptive law is utilized to approximate the unknown function f by fuzzy logic system in designing the sliding mode controller for the nonlinear system. In order to reduce the approximation errors, the differences of nonlinear function and fuzzy approximator, an adaptive law is also intoduced and the stability of proposed control scheme are proven with simple adaptive law and roburst adaptive law. This proposed control scheme is applied to a single link robot arm.

  • PDF

FPGA Implementation and Experiment of a Time-Delayed Controller for Humanoid Robot Arm Control (다관절 휴머노이드 로봇 팔의 제어를 위한 시간지연 제어기의 FPGA 구현 및 실험)

  • Lee, Woon-Kyu;Jeon, Hyo-Won;Jung, Seul
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.13 no.7
    • /
    • pp.649-655
    • /
    • 2007
  • In this paper, a time-delayed controller for position control of humanoid robot arms is designed and implemented on a field programmable gate array(FPGA) chip. The time-delayed control algorithm is simple to implement, and robust to reject disturbances. The time-delayed control method uses the one sample time-delayed previous information to cancel out uncertainties in the system. Since the sampling time is so fast with the current hardware technology, the time-delayed controller can be implemented. However, inertia values should be correctly estimated to have the better performance. The position tracking tasks of humanoid robot arms are tested to compare performances of several control algorithms including the time-delayed controller.

Servo control of a manipulator and trajectory planning (매니퓨레이터 서보제어와 궤도 계획)

  • 최진태;박상덕
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1990.10a
    • /
    • pp.135-139
    • /
    • 1990
  • In general, the control of robot arms falls into two board categories (position control and force control). The joint interpolated trajectory schemes generally interpolate the desired joint path by a class of polynomial functions and generate a sequence of time based control set points for the control of a manipulator from a initial location to its destination. A digital position controller was designed and adapted to the industrial balancing manipulator. And also, the joint interpolated trajectory using 3rd order polynomial was generated in this study. The IBM PC used as the main controller and the trajectory planner had enough run-time capabilities. The 8097BH microcontroller is an integral pan of the joint controller which directly controls an axis of motion. The PI servo control system to treat each joint of the robot arm as a independent joint servo mechanism had satisfying performance, and a sequence of time-based intermediate configurations of the manipulator hand showed good continuity and smoothness on position and velocity of the manipulator's joint coordinates along the trajectory.

  • PDF

Robust Fault-Tolerant Control for Robotic Systems

  • Shin, Jin-Ho;Lee, Ju-Jang
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1998.10a
    • /
    • pp.513-518
    • /
    • 1998
  • In this paper, a robust fault-tolerant control scheme for robot manipulators overcoming actuator failures is presented. The joint(or actuator) fault considered in this paper is the free-swinging joint failure and causes the loss of torque on a joint. The presented fault-tolerant control framework includes a normal control with normal(non-failed) operation, a fault detection and a fault-tolerant control to achieve task completion. For both no uncertainty case and uncertainty case, a stable normal con-troller and an on-line fault detection scheme are presented. After the detection and identification of joint failures, the robot manipulator becomes the underactuated robot system with failed actuators. A robust adaptive control scheme of robot manipulators with the detected failed-actuators using the brakes equipped at the failed(passive) joints is proposed in the presence of parametric uncertainty and external disturbances. To illustrate the feasibility and validity of the proposed fault-tolerant control scheme, simulation results for a three-link planar robot arm with a failed joint are presented.

  • PDF

Dynamic control approach of a robot manipulator for line-tracking applications (선추적 시스템을 위한 로봇매니퓰레이터의 동적제어)

  • Park, Tae-Hyeong
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.4 no.3
    • /
    • pp.349-359
    • /
    • 1998
  • A robot control scheme for specific application a line-tracking system is newly presented. To improve the performance of line-tracking, robot arm dynamics and torque constraints are incorporated into the control scheme. The tracking problem for the workpiece on a variable-speed conveyor is formulated as an optimal tracking problem with specific criteria. Dividing the conveyor speed into the nominal term and the perturbed term, a two-stage control strategy is employed to cope with the nonlinearity and uncertainty of the robot-conveyor system. Simulation results are given to verify good tracking performance with fast cycle time and high accuracy in a robotic workcell.

  • PDF