• Title/Summary/Keyword: Control arm

Search Result 1,235, Processing Time 0.028 seconds

On Design of Visual Servoing using an Uncalibrated Camera in 3D Space

  • Morita, Masahiko;Kenji, Kohiyama;Shigeru, Uchikado;Lili, Sun
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2003.10a
    • /
    • pp.1121-1125
    • /
    • 2003
  • In this paper we deal with visual servoing that can control a robot arm with a camera using information of images only, without estimating 3D position and rotation of the robot arm. Here it is assumed that the robot arm is calibrated and the camera is uncalibrated. We use a pinhole camera model as the camera one. The essential notion can be show, that is, epipolar geometry, epipole, epipolar equation, and epipolar constrain. These play an important role in designing visual servoing. For easy understanding of the proposed method we first show a design in case of the calibrated camera. The design is constructed by 4 steps and the directional motion of the robot arm is fixed only to a constant direction. This means that an estimated epipole denotes the direction, to which the robot arm translates in 3D space, on the image plane.

  • PDF

Dynamic Mode Control of Flexible Robotic Arm (유연한 로보트 팔의 동적 모우드 제어)

  • 박세승;박종국
    • Journal of the Korean Institute of Telematics and Electronics B
    • /
    • v.30B no.9
    • /
    • pp.36-44
    • /
    • 1993
  • In the development of a high speed and light weight manipulator, it is necessary to consider the flexibility of a robotic arm. The infinite dynamics must be analyzed to obtain the finite mode modeling to achieve the feasible controller design of the robotic arm. The modeling procedures of the flexible robot arm, and natural frequencies and mode shapes by the constrained and unconstrained mode method are illustrated. The transfer function of the robot arm with a payload is also shown. The controller is designed by the pole assignment and optimal control theory to compensate for the unmodelled dynamic effects to the low order system. Also, the pole assignment method involving the harmonic vibration mode is presented through computer simulation.

  • PDF

A FORCE/POSITION CONTROL FOR TWO-ARM MOTION COORDINATION AND STABILITY ROBUSTNESS ANALYSIS

  • 최형식
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1992.10a
    • /
    • pp.215-219
    • /
    • 1992
  • This paper presents a motion coordination of two robot manipulators coordinating an object. To coordinate the object, a force/position control scheme in a mode of leaer/follower is devised. The dynamics of the object are incorporated into the dynamics of the leader arm, which yields a reduced order model of two arm system. In order to regulate interaction forces between two arm, the dynamics of the follower arm are expressed as force dynamic equations such that a novel direct forces between two arms and two different type of bounded input disturbances, boundedness and asymptotic stability results based on a proposed Lyapunov function are shown. Also, a sufficient condition for a stability robustness is derived based on the Lyapunov approach.

Human Arm Motion Tracking based on sEMG Signal Processing (표면 근전도 신호처리 기반 인간 팔 동작의 추종 알고리즘)

  • Choi, Young-Jin;Yu, Hyeon-Jae
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.13 no.8
    • /
    • pp.769-776
    • /
    • 2007
  • This paper proposes the human arm motion tracking algorithm based on the signal processing for surface EMG (electromyogram) sensors attached on both upper arm and shoulder. The signals acquired by using surface EMG sensors are processed with choosing the maximum in a short period, taking the absolute value, and filtering noises out with a low-pass filter. The processed signals are directly used for the motion generation of virtual arm in real time simulator. The virtual arm of simulator has two degrees of freedom and complies with the flexion and extension motions of elbow and shoulder. Also, we show the validity of the suggested algorithms through the experiments.

On Design of Visual Servoing using an Uncalibrated Camera and a Calibrated Robot

  • Uchikado, Shigeru;Morita, Masahiko;Osa, Yasuhiro;Mabuchi, Tesuo;Tanya, Kanya
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2001.10a
    • /
    • pp.23.2-23
    • /
    • 2001
  • In this paper we deal with visual servoing that can control a robot arm with a camera using information of images only, without estimating 3D position and rotation of the robot arm. Here it is assumed that the robot arm is calibrated and the camera is uncalibrated. We use a pinhole camera model as the camera one. The essential notion can be show, that is, epipolar geometry, epipole, epipolar equation, and epipolar constrain. These play an important role in designing visual servoing. For easy understanding of the proposed method we first show a design in case of the calibrated camera. The design is constructed by 4 steps and the directional motion of the robot arm is fixed only to a constant direction. This means that an estimated epipole denotes the direction, to which the robot arm translates in 3D space, on the image plane.

  • PDF

Optimal Trajectory Planning for Cooperative Control of Dual-arm Robot (양팔 로봇의 협조제어를 위한 최적 경로 설계)

  • Park, Chi-Sung;Ha, Hyun-Uk;Lee, Jang-Myung
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.16 no.9
    • /
    • pp.891-897
    • /
    • 2010
  • This paper proposes a cooperative control algorithm for a dual-arms robot which is carrying an object to the desired location. When the dual-arms robot is carrying an object from the start to the goal point, the optimal path in terms of safety, energy, and time needs to be selected among the numerous possible paths. In order to quantify the carrying efficiency of dual-arms, DAMM (Dual Arm Manipulability Measure) has been defined and applied for the decision of the optimal path. The DAMM is defined as the intersection of the manipulability ellipsoids of the dual-arms, while the manipulability measure indicates a relationship between the joint velocity and the Cartesian velocity for each arm. The cost function for achieving the optimal path is defined as the summation of the distance to the goal and inverse of this DAMM, which aims to generate the efficient motion to the goal. It is confirmed that the optimal path planning keeps higher manipulability through the short distance path by using computer simulation. To show the effectiveness of this cooperative control algorithm experimentally, a 5-DOF dual-arm robot with distributed controllers for synchronization control has been developed and used for the experiments.

Traded control of telerobot system with an autonomous visual sensor feedback (자율적인 시각 센서 피드백 기능을 갖는 원격 로보트 시스템교환 제어)

  • 김주곤;차동혁;김승호
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1996.10b
    • /
    • pp.940-943
    • /
    • 1996
  • In teleoperating, as seeing the monitor screen obtained from a camera instituted in the working environment, human operator generally controls the slave arm. Because we can see only 2-D image in a monitor, human operator does not know the depth information and can not work with high accuracy. In this paper, we proposed a traded control method using an visual sensor for the purpose of solving this problem. We can control a teleoperation system with precision when we use the proposed algorithm. Not only a human operator command but also an autonomous visual sensor feedback command is given to a slave arm for the purpose of coincidence current image features and target image features. When the slave arm place in a distant place from the target position, human operator can know very well the difference between the desired image features and the current image features, but calculated visual sensor command have big errors. And when the slave arm is near the target position, the state of affairs is changed conversely. With this visual sensor feedback, human does not need coincide the detail difference between the desired image features and the current image features and proposed method can work with higher accuracy than other method without, sensor feedback. The effectiveness of the proposed control method is verified through series of experiments.

  • PDF

Development of Control System with Android Operation System for Dentistry Integrated Device (치과용 통합공급장치를 위한 안드로이드 운영체제가 내장된 제어시스템 개발)

  • Hwang, Gi-Hyun
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.16 no.3
    • /
    • pp.635-642
    • /
    • 2012
  • In this paper, a real-time control system with Wi-Fi wireless communication was developed for dentistry Integrated Device. The control system is developed based on the Android platform using S3C6410 ARM core that is equipped with Wi-Fi communication, RS-485, Linux 2.6 and Android 2.0. The control system controls a water purifier, compressor and suction in real-time. The experimental results that the control system was controlled by each control modules connected with a water purifier, compressor and suction. The status values are displayed in real-time using RS485.

Analysis on the Kinematics and Dynamics of Human Arm Movement Toward Upper Limb Exoskeleton Robot Control - Part 2: Combination of Kinematic and Dynamic Constraints (상지 외골격 로봇 제어를 위한 인체 팔 동작의 기구학 및 동역학적 분석 - 파트 2: 제한조건의 선형 결합)

  • Kim, Hyunchul;Lee, Choon-Young
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.20 no.8
    • /
    • pp.875-881
    • /
    • 2014
  • The redundancy resolution of the seven DOF (Degree of Freedom) upper limb exoskeleton is key to the synchronous motion between a robot and a human user. According to the seven DOF human arm model, positioning and orientating the wrist can be completed by multiple arm configurations that results in the non-unique solution to the inverse kinematics. This paper presents analysis on the kinematic and dynamic aspect of the human arm movement and its effect on the redundancy resolution of the seven DOF human arm model. The redundancy of the arm is expressed mathematically by defining the swivel angle. The final form of swivel angle can be represented as a linear combination of two different swivel angles achieved by optimizing two cost functions based on kinematic and dynamic criteria. The kinematic criterion is to maximize the projection of the longest principal axis of the manipulability ellipsoid of the human arm on the vector connecting the wrist and the virtual target on the head region. The dynamic criterion is to minimize the mechanical work done in the joint space for each of two consecutive points along the task space trajectory. The contribution of each criterion on the redundancy was verified by the post processing of experimental data collected with a motion capture system. Results indicate that the bimodal redundancy resolution approach improved the accuracy of the predicted swivel angle. Statistical testing of the dynamic constraint contribution shows that under moderate speeds and no load, the dynamic component of the human arm is not dominant, and it is enough to resolve the redundancy without dynamic constraint for the realtime application.

The Control of Flexible Robot Arm using Adaptive Control Theory (적응제어 이론을 이용한 유연한 로봇팔의 제어)

  • Han, Jong-Kil
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.7 no.5
    • /
    • pp.1139-1144
    • /
    • 2012
  • The ration of payload to weight of industrial robot amounts form 1:10 to 1:30. Compared with man who have a ration of 3:1, it is very low. One of the goals for the next generation of robots will be a ration. This might be possible only by developing lightweight robots. When two-link flexible arm is rotated about an joint axis, transverse vibration may occur. In this paper, vibration dynamics of flexible arm is modeled by using Bernoulli-Euler beam theory and Lagrange equation. Using the fact that matrix $\dot{D}-2C$ is skew symmetric, new controllers which have a simplified structure with less computational burden is proposed by using Lyapunov stability theory. We propose deterministic and adaptive control laws for two link flexible arm, and the validity of the proposed control scheme is shown in computer simulation for two-link flexible arm.