• Title/Summary/Keyword: Control and monitoring software

Search Result 368, Processing Time 0.036 seconds

An Effective Multivariate Control Framework for Monitoring Cloud Systems Performance

  • Hababeh, Ismail;Thabain, Anton;Alouneh, Sahel
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.13 no.1
    • /
    • pp.86-109
    • /
    • 2019
  • Cloud computing systems' performance is still a central focus of research for determining optimal resource utilization. Running several existing benchmarks simultaneously serves to acquire performance information from specific cloud system resources. However, the complexity of monitoring the existing performance of computing systems is a challenge requiring an efficient and interactive user directing performance-monitoring system. In this paper, we propose an effective multivariate control framework for monitoring cloud systems performance. The proposed framework utilizes the hardware cloud systems performance metrics, collects and displays the performance measurements in terms of meaningful graphics, stores the graphical information in a database, and provides the data on-demand without requiring a third party software. We present performance metrics in terms of CPU usage, RAM availability, number of cloud active machines, and number of running processes on the selected machines that can be monitored at a high control level by either using a cloud service customer or a cloud service provider. The experimental results show that the proposed framework is reliable, scalable, precise, and thus outperforming its counterparts in the field of monitoring cloud performance.

Self-Diagnostic Signal Monitoring System of KWP2000 Vehicle ECU using Bluetooth

  • Choi, Kwang-Hun;Lee, Hyun-Ho;Lee, Young-Choon;Kwon, Tae-Kyu;Lee, Seong-Cheol
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2004.08a
    • /
    • pp.132-137
    • /
    • 2004
  • On-Board Diagnostic(OBD) systems are in most cars and light trucks on the load today. During the 1970's and early 1980's manufacturers started using electronic means to control engine functions and diagnose engine problems. The CARB's diagnostic requirements to meet EPA emission standards have been designated as OBD with a goal of monitoring all of the emissions-related components, as well as the chassis, body, accessory devices and the diagnostic control network of the vehicle for proper operation. In this paper, we present a remote measurement system for the wireless monitoring of diagnosis signal and sensors output signals of ECU adopted KWP2000, united the OBD communication protocol, on OBD-compliant vehicle using the wirless communication technique of Bluetooth. In order to measure the ECU signals, the interface circuit is designed to communicate ECU and designed terminal wirelessly according to the ISO, SAE regulation of communication protocol standard. A microprocessor S3C3410X is used for communicating ECU signals. The embedded system's software is programmed to measure the ECU signals using the ARM compiler and ANCI C based on MicroC/OS kernel to communicate between bluetooth modules using bluetooth stack. The diagnostic system is developed using Visual C++ MFC and protocol stack of bluetooth for Windows environment. The self-diagnosis and sensor output signals of ECU is able to monitor using PC with bluetooth board connected in serial port of PC. The algorithms for measuring the ECU sensor output and self-diagnostic signals are verified to monitor ECU state. At the same time, the information to fix the vehicle's problem can be shown on the developed monitoring software. The possibility for remote measurement of self-diagnosis and sensor signals of ECU adopted KWP2000 in embedded system verified through the developed systems and algorithms.

  • PDF

CONCEPTUAL DESIGN OF MONITORING AND CONTROL SUBSYSTEM FOR GNSS GROUND STATION

  • Jeong, Seong-Kyun;Kim, In-Jun;Lee, Jae-Eun;Lee, Sang-Uk;Kim, Jae-Hoon
    • Journal of Astronomy and Space Sciences
    • /
    • v.24 no.4
    • /
    • pp.389-396
    • /
    • 2007
  • The Global Navigation Satellite System (GNSS) becomes more important and is applied to various systems. Recently, the Galileo navigation system is being developed in Europe. Also, other countries like China, Japan and India are developing the global/regional navigation satellite system. As various global/regional navigation satellite systems are used, the navigation ground system gets more important for using the navigation system reasonably and efficiently. According to this trend, the technology of GNSS Ground Station (GGS) is developing in many fields. The one of purposes for this study is to develop the high precision receiver for GNSS sensor station and to provide ground infrastructure for better performance services on navigation system. In this study, we consider the configuration of GNSS Ground Station and analyze function of Monitoring and Control subsystem which is a part of GNSS Ground Station. We propose Monitoring and Control subsystem which contains the navigation software for GNSS Ground System to monitor and control equipments in GNSS Ground Station, to spread the applied field of navigation system, and to provide improved navigation information to user.

Implementation of Small-Scale Wind Turbine Monitoring and Control System Based on Wireless Sensor Network (무선 센서 네트워크 기반 소규모 풍력발전기 모니터링 및 제어 시스템 구현)

  • Kim, Do-Young;Kim, Young-Chon
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.40 no.9
    • /
    • pp.1808-1818
    • /
    • 2015
  • Recently, the wind power has experienced great attentions and growths among many renewable energy sources. To increase the power generation performance and economic feasibility, the size of wind turbine (WT) is getting bigger and most of wind power plants are being constructed on offshore. Therefore, the maintenance cost is relatively high because boats or helicopters are needed operators to reach the WT. In order to combat this kind of problem, remote monitoring and control system for the WT is needed. In this paper, the small-scale WT monitoring and control system is implemented using wireless sensor network technologies. To do this, sensor devices are installed to measure and send the WT status and control device is installed to receive control message for specific operation. The WT is managed by control center through graphic user interface (GUI) based monitoring and control software. Also, smart device based web-program is implemented to make the remote monitoring of the WT possible even though operators are not in control room.

Monitoring Program based on Windows for Distribution Panel Tester (윈도우즈 기반 배전반 회로시험기용 모니터링 프로그램)

  • Park, C.W.;Lee, B.K.;Oh, B.W.;Kim, J.H.;Shin, M.C.
    • Proceedings of the KIEE Conference
    • /
    • 2003.07a
    • /
    • pp.393-395
    • /
    • 2003
  • This paper deals with the monitoring program based on Windows for Distribution Panel Tester. The monitoring software has variety function : data file conversion, user define data generation, data metering and signal analysis etc. The software is designed for GUI because it provides easy test and control interface for users or operators.

  • PDF

Remote control by mobile and Labview (휴대폰과 Labview를 활용한 원격제어)

  • Park, Sang-Gug
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2008.10a
    • /
    • pp.797-801
    • /
    • 2008
  • This paper describes technical method about remote control and monitoring of local system by use personal mobile device in anytime and anywhere. Therefore, the user don't need to stay in operation room of local system. The PC server environment for the mobile connection are constructed with Apache web server, PHP and MySQL ODBC. The mobile internet homepage for the remote mobile connection is designed by Anybuilder software and mobile simulator, Openwave SDK 6.2 is used for the development. The mobile internet program can be applicate to all of domestic communication companies LGT, SKT and KTF. We use KTF mobile contains WAP browser for the test. We used NI Labview software to control and monitoring of local system. The local system, which will be controlled remotely have constructed with analog/digital signal acquisition device, signal control board and their software. By experiments, we confirmed remote control by mobile device are possible.

  • PDF

Web based control modules Using LonWorks/Ethernet Server for Control a large Scale Renewable Energy System in Building (빌딩용 신.재생에너지시스템 제어를 위한 LonWorks기반 원격 제어모듈 개발)

  • Hong, Wonl-Pyo
    • Proceedings of the KIEE Conference
    • /
    • 2008.07a
    • /
    • pp.1706-1711
    • /
    • 2008
  • This paper proposes a new Web based-control concept & design method and implementation of LonWorks network system for a large scale renewable energy energy control and monitoring system in building. The Experimental LonWorks network system using LonWorks/Ethernet(Web) server is designed and fabricated. This article addresses issues in architecture of LonWorks/Ethernet sever, embedded processors architecture for converting LonTalks protocol to Modbus protocol and software, and Internet technologies. It is also verified that the multi-induction motor control and monitoring system using LonWorks/Ethernet server have available, interoperable, reliable performance characteristics from the experimental results, Especially, The seamless integration of TCP/IP networks with control networks allows access to any control point from anywhere. Thus, the results provide a available technical data for remote distributed control system of industrial and buildings field.

  • PDF

Implementation of NON-ROS remote control software of TurtleBot 2 based Windows 10 IoT core (Windows 10 IoT Core 기반 Non-ROS TurtleBot2용 원격 제어 소프트웨어 구현)

  • Onesphore, Ingabire;Kim, Minyoung;Jang, Jongwook
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2019.05a
    • /
    • pp.111-114
    • /
    • 2019
  • This paper intends to implement a software that controls TurtleBot 2 remotely. The moving of the robot TurtleBot 2 can be controlled using command control based on Windows 10 IoT core instead of the Robot Operating System (ROS). The implemented software allows the user to move remotely TurtleBot 2 in any specified direction and perform the monitoring such as reading feedback data from the robot. Through TCP/IP and serial communication technology, TurtleBot 2 can successfully receive command control and send feedback to the user. Using C# programming language, two Universal Windows Platform apps (client app and server app) have been implemented to allow communication between the user and TurtleBot 2. The result of this implementation has been verified and tested in an indoor platform.

  • PDF

The Conception and Function of the MMI(Man Machine Interface) Software In the Distribution Automation System (배전자동차용 MMI 프로그램 설계 개념 및 기능)

  • Cho, Nam-Hun;Ha, Bok-Nam;Lee, Jung-Ho;Lim, Seong-Ii;Seo, Jeong-Il;Lu, Jong-Uk
    • Proceedings of the KIEE Conference
    • /
    • 1999.11b
    • /
    • pp.303-305
    • /
    • 1999
  • This paper introduces the MMI software for Central Control System in the Distribution Automation System. It provides remote monitoring and real-time control of distribution through the use of remote terminal units(RTUs) graphically. Our MMI software for distribution automation displays a circuit operating map based on the distribution automation database, and overlays it with outage information from the feeder Automation software.

  • PDF