• Title/Summary/Keyword: Control Frequency

Search Result 8,950, Processing Time 0.038 seconds

Air-pressure Control of Diaphragm using Variable Frequency Current Control (가변 주파수 전류 제어에 의한 다이어프램의 압력제어)

  • Lim, Geun-Min;Lee, Dong-Hee
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.16 no.3
    • /
    • pp.258-265
    • /
    • 2011
  • This paper presents a variable frequency current control scheme for the air-pressure control of diaphragm. Differ from the conventional air-pressure control of diaphragm, the proposed method uses a single-phase inverter to control the phase current and frequency. The phase current is adjusted to keep the reference air-pressure of the diaphragm. And the current frequency is changed to reduce the mechanical vibration. In order to smooth change of the operation with a constant air-pressure, the frequency is changed according to the voltage reference from the current controller. When the phase current is satisfied to the constant air-pressure, the current frequency is increased to reduce the vibration of the diaphragm. When the reference voltage to keep the phase current is over than the set value, the current frequency is decreased to keep the air-pressure. The proposed control scheme is verified by the experimental test of a commercial diaphragm.

Introduction of Generator Unit Controller and Its Tuning for Automatic Generation Control in Korean Energy Management System (K-EMS)

  • Park, Min-Su;Chun, Yeong-Han
    • Journal of Electrical Engineering and Technology
    • /
    • v.6 no.1
    • /
    • pp.42-47
    • /
    • 2011
  • Automatic generation control (AGC) is an important function for load frequency control, which is being implemented in Energy Management System (EMS). A key feature of AGC is to back up governors to enhance the performance of frequency control. The governor regulates system frequency in several to ten seconds, while the droop control concept results in steady-state control error. AGC is a supplementary tool for compensation of the steady-state error caused by the droop setting of the governors. As the AGC target is delivered to each generator as an open loop control target, the generator output is not guaranteed to follow the AGC target. In this paper, we introduce generating unit controller (GUC) control block, which has the purpose of enabling the generator output to track the AGC target while maintaining the governor performance. We also address the tuning methods of GUC for better performance of AGC in the Korea Energy Management System (K-EMS).

A Study on the Phase Bandwidth Frequency of a Directional Control Valve based on the Metering Orifice (미터링 오리피스를 이용한 방향제어밸브 위상각 대역폭 주파수 측정에 관한 연구)

  • Kim, Sungdong;Jeon, Sehyeong;Yun, Jooseop
    • Journal of Drive and Control
    • /
    • v.15 no.1
    • /
    • pp.1-9
    • /
    • 2018
  • The spool displacement of directional control valve can be considered as the standard signal to measure the bandwidth frequency of a directional control valve. When the spool displacement is not available, the metering-orifice system is implemented in this research as an alternative way of measuring the 90 degrees phase bandwidth frequency of the hydraulic directional control valve. The inertia effect on the transmission line oil induces the phase lead of the valve load pressure when compared with the phase of spool displacement. The capacitance effect of the oil induces the phase lag of the valve load pressure. The phase of the load pressure can be adjusted to be the same as that of the spool displacement by controlling the opening area of the metering orifice. A series of experiments were conducted to verify the effectiveness of the metering orifice. The 90 degrees phase bandwidth frequency measured from the valve load pressure was significantly deviated in some cases from the frequency of the spool displacement. The metering orifice was hard to be applied to measure the -90 degrees phase bandwidth frequency of the high precision.

Current Control of a Single-phase PWM Converter under the Distorted Source Voltage and Frequency Condition (전원 전압 왜곡과 주파수 변동 시 단상 PWM 컨버터의 전류 제어)

  • Ahn, Chang-Heon;Kim, Sang-Hoon
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.20 no.4
    • /
    • pp.356-362
    • /
    • 2015
  • This paper presents a current control strategy in the synchronous reference frame for a single-phase PWM converter, which ensures sinusoidal input current control under the distorted source voltage and frequency condition. Given that the distorted source voltage distorts the phase angle for PWM converter control, the input current contains the same harmonics as the source voltage. Aside from the distorted voltage, the variation in source frequency reduces the performance of input current control. To achieve sinusoidal input current control under the distorted source voltage and frequency condition, this paper proposes a compensation strategy of current reference with the distortion component extracted from the phase angle and a detection strategy of frequency variation from the output of a synchronous reference frame phase-lock loop. The experimental results confirm the validity of the proposed method under the distorted source voltage and frequency condition.

Control signal transmission with optical fiber

  • Wu, Yuying;Ikeda, Hiroaki;Yoshida, Hirofumi;Shinohara, Shigenobu;Tsuchiya, Etsuo;Nishimura, Ken-Ichi
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1990.10b
    • /
    • pp.1112-1115
    • /
    • 1990
  • Described is a new control signal transmission system which utilizes an optical fiber to transmit 2-bit control signals from the transmitter to receiver. In the transmitter the DC series control voltages are converted into the multiple frequency signals by voltage controlled oscillator (VCO). The multiple frequency signals can easily be transmitted by optical fiber. In the receiver the multiple frequency signals can be detected by analog or digital circuits and then be converted into 2-state control signals which can be used for a variety of applications.

  • PDF

Analysis and Application of Repetitive Control Scheme for Three-Phase Active Power Filter with Frequency Adaptive Capability

  • Sun, Biaoguang;Xie, Yunxiang;Ma, Hui;Cheng, Li
    • Journal of Electrical Engineering and Technology
    • /
    • v.11 no.3
    • /
    • pp.618-628
    • /
    • 2016
  • Active power filter (APF) has been proved as a flexible solution for compensating the harmonic distortion caused by nonlinear loads in power distribution power systems. Digital repetitive control can achieve zero steady-state error tracking of any periodic signal while the sampling points within one repetitive cycle must be a known integer. However, the compensation performance of the APF would be degradation when the grid frequency varies. In this paper, an improved repetitive control scheme with frequency adaptive capability is presented to track any periodic signal with variable grid frequency, where the variable delay items caused by time-varying grid frequency are approximated with Pade approximants. Additionally, the stability criterion of proposed repetitive control scheme is given. A three-phase shunt APF experimental platform with proposed repetitive control scheme is built in our laboratory. Simulation and experimental results demonstrate the effectiveness of the proposed repetitive control scheme.

A Study on the Load Frequency Control of 2-Area Power System using Fuzzy-Neural Network Controller (퍼지-신경망 제어기를 이용한 2지역 계통의 부하주파수제어에 관한연구)

  • Chung, Hyeng-Hwan;Kim, Sang-Hyo;Joo, Seok-Min;Lee, Jeong-Phil;Lee, Dong-Chul
    • The Transactions of the Korean Institute of Electrical Engineers A
    • /
    • v.48 no.2
    • /
    • pp.97-106
    • /
    • 1999
  • This paper proposes the structure and the algorithm of the Fuzzy-Neural Controller(FNNC) which is able to adapt itself to unknown plant and the change of circumstances at the Fuzzy Logic Controller(FLC) with the Neural Network. This Learning Fuzzy Logic Controller is made up of Fuzzy Logic controller in charge of a main role and Neural Network of an adaptation in variable circumstances. This construct optimal fuzzy controller applied to the 2-area load frequency control of power system, and then it would examine fitness about parameter variation of plant or variation of circumstances. And it proposes the optimal Scale factor method wsint three preformance functions( E, , U) of system dynamics of load frequency control with error back-propagation learning algorithm. Applying the controller to the model of load frequency control, it is shown that the FNNC method has better rapidity for load disturbance, reduces load frequency maximum deviation and tie line power flow deviation and minimizes reaching and settling time compared to the Optimal Fuzzy Logic Controller(OFLC) and the Optimal Control for optimzation of performance index in past control techniques.

  • PDF

A Study on the Development of High-Intensity Focused Ultrasound Skin Treatment System Through Frequency Output Control Optimization (주파수 출력 제어 최적화를 통한 고강도 집속 초음파 피부치료 시스템 개발 연구)

  • Park, Jong-Cheol;Kim, Min-Sung
    • Journal of Korea Multimedia Society
    • /
    • v.25 no.8
    • /
    • pp.1022-1037
    • /
    • 2022
  • It is important to develop a transducer that generates uniform output power through frequency control of the HIFU at 4 MHz frequency for the high intensity focused ultrasound (HIFU) skin diseases treatment. In this paper, a 4 MHz frequency band HIFU system for skin disease treatment was designed, manufactured and developed. In HIFU, even for the ultrasonic vibrator in the 4 MHz frequency band, the characteristics of the output power of the HIFU are different depending on the difference in the thickness of the PZT material. Through the development of a system amplifier, the sound output of the HIFU transducer was improved to more than 48 W and uniform output power control was possible. And, it is possible to control the output power even in a frequency band of 4.0 to 4.7 MHz, which is wider than 4.0 MHz, and shows the resonance frequency of the transducer. The maximum output power for each frequency was 49.969 W and the minimum value was 48.018 W. The maximum output power compared to the minimum output power is 49.969 W, which is uniform within 4.1%. It was confirmed that the output power of the HIFU through the amplifier can be uniformly controlled in the 4 MHz frequency band.

Sensorless Control of a PMSM at Low Speeds using High Frequency Voltage Injection

  • Yoon Seok-Chae;Kim Jang-Mok
    • Journal of Power Electronics
    • /
    • v.5 no.1
    • /
    • pp.11-19
    • /
    • 2005
  • This paper describes the two control techniques to perform the sensorless vector control of a PMSM by injecting the high frequency voltage to the stator terminal. The first technique is the estimation algorithm of the initial rotor position. A PMSM possesses the saliency which produces the ellipse of the stator current when the high frequency voltage is injected into the motor terminal. The major axis angle of the current ellipse gives the rotor position information at a standstill. The second control technique is a sensorless control algorithm that injects the high frequency voltage to the stator terminal in order to estimate the rotor position and speed. The rotor position and speed for sensorless vector control is calculated by appropriate signal processing to extract the position information from the stator current at low speeds or standstill. The proposed sensorless algorithm using the double-band hysteresis controller exhibits excellent reference tracking and increased robustness. Experimental results are presented to verify the feasibility of the proposed control schemes. Speed, position estimation and vector control were carried out on the floating point processor TMS320VC33.

Load Frequency Control of Multi-area Power System using Auto-tuning Neuro-Fuzzy Controller (자기조정 뉴로-퍼지제어기를 이용한 다지역 전력시스템의 부하주파수 제어)

  • Jeong, Hyeong-Hwan;Kim, Sang-Hyo;Ju, Seok-Min;Heo, Dong-Ryeol;Lee, Gwon-Sun
    • The Transactions of the Korean Institute of Electrical Engineers A
    • /
    • v.49 no.3
    • /
    • pp.95-106
    • /
    • 2000
  • The load frequency control of power system is one of important subjects in view of system operation and control. That is even though the rapid load disturbances were applied to the given power system, the stable and reliable power should be supplied to the users, converging unconditionally and rapidly the frequency deviations and the tie-line power flow one on each area into allowable boundary limits. Nonetheless of such needs, if the internal parameter perturbation and the sudden load variation were given, the unstable phenomenal of power system can be often brought out because of the large frequency deviation and the unsuppressible power line one. Therefore, it is desirable to design the robust neuro-fuzzy controller which can stabilize effectively the given power system as soon as possible. In this paper the robust neuro-fuzzy controller was proposed and applied to control of load frequency over multi-area power system. The architecture and algorithm of a designed NFC(Neuro-Fuzzy Controller) were consist of fuzzy controller and neural network for auto tuning of fuzzy controller. The adaptively learned antecedent and consequent parameters of membership functions in fuzzy controller were acquired from the steepest gradient method for error-back propagation algorithm. The performances of the resultant NFC, that is, the steady-state deviations of frequency and tie-line power flow and the related dynamics, were investigated and analyzed in detail by being applied to the load frequency control of multi-area power system, when the perturbations of predetermined internal parameters. Through the simulation results tried variously in this paper for disturbances of internal parameters and external stepwise load stepwise load changes, the superiorities of the proposed NFC in robustness and adaptive rapidity to the conventional controllers were proved.

  • PDF