• Title/Summary/Keyword: Control Arm

Search Result 1,243, Processing Time 0.039 seconds

A Study on the Pivot Steering Control of an In-Wheel Drive Vehicle with Trailing Arm Suspensions (인휠 구동 트레일링 암 형식 차량의 제자리 회전 조향 제어 연구)

  • Kim, Chi-Ung;Lee, Kyoung-Hoon;Woo, Kwan-Je
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.29 no.7
    • /
    • pp.745-752
    • /
    • 2012
  • The pivot steering of an individual wheel motor drive vehicle is an effective steering maneuver in the narrow road, but it has become a matter of concern that the torque input of each wheel is very difficult to determine. In this study, the independent yaw moment control was proposed for the smooth pivot steering control of an in-wheel drive vehicle. For this control method, the vertical forces of tires were estimated from the trailing arm dynamic model, and the yaw moments of individual wheels were calculated from the vehicle dynamic model. Dynamic simulation results showed that the independent yaw moment control was much more effective on the minimization of the instabilities of pivot steering in comparison with the conventional direct yaw moment control with yaw rate feedback.

An analysis of the arm-type site binding domain of bacteriophage .lambda. integrase

  • Cho, Eun-Hee
    • Journal of Microbiology
    • /
    • v.33 no.2
    • /
    • pp.165-170
    • /
    • 1995
  • The 356 amino acid long lambda integrase protein of bacteriophage .lambda. constains two autonomous DNA binding domains with distinct sequence specificities. The amino terminal domain of integrase is implicated to bind to the arm-type sequences and the carboxyl domain interacts with the coretype sequencess. As a first step to understand the molecular mechanism of the integrase-DNA interaction at the arm-type site, the int(am)94 gene carrying an amber mutation at the 94th codon of the int was cloned under the control of the P$\_$tac/ promoter and the lacI$\_$q/ gene. The Int(am)94 mutant protein of amino terminal 93 amino acid residues can be produced at high level from a suppressor free strain harboring the plasmid pInt(am)94. The arm-type binding activity of Int(am)94 were measured in vivo and in vitro. A comparison of the arm-type binding properties of the wild-type integrase and the truncated Int(am)94 mutant indicated that the truncated fragment containing 93 amino acid residues carry all the determinants for DNA binding at the arm-type sites.

  • PDF

Pattern Recognition of EMG signals in arm movements for Human interface (휴먼 인터페이스를 위한 팔운동 근전신호 패턴인식에 관한 연구)

  • Kim, Kyoung-Ryul;Yoon, Kwang-Ho;Kim, Lark-Kyo;Nam, Moon-Hyon
    • Proceedings of the KIEE Conference
    • /
    • 2004.07d
    • /
    • pp.2356-2358
    • /
    • 2004
  • This thesis aims to investigate new approaches to the control strategies of human arm movements and its application for the human interface. By analyzing myoelectric signal(MES) from the arm movements of the normal human subjects, neurological informations obtained patterned could be used to identify different movement patterns of the arm movement. In this paper Artificial neural network for separation of the contraction patterns of four kinds of arm movements, i.e. and flexion and extension of the elbow and adduction and abduction of the forearm were adopted through computer simulation and experiments results were compared with the experimental added-load arm movements.

  • PDF

A Study on the Position Control Improvement of Flexible Robot Arm by Inverse Dynamics (역학을 이용한 탄성 로보트 아암의 선단 위치 제어 기어에 대한 연구)

  • 방두열;이성철
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1997.04a
    • /
    • pp.9-13
    • /
    • 1997
  • This parer is a study on the inverse dynamics of a one-link flexible robot arm which is controlled by translational base motion. The system is composed of a flexible arm, a base for driving arm, a DC servomotor, and a computer. The arm base is moved so that the arm tip follows a desired function. The governing equations are based on the Bernoullie-Euler beam theory and solved by applying the Laplace transform method and then the numerical inversion method. Moter voltage is obtained by simulation for tip trajectory functions i. e. Bang-Bang, Cosine and Gauss Function. And, the tip motion is measured while simulation results are applying. Then the results are investigated to select most proper input and to compare their chateristics. Experimental results show the Cosine function is most proper with respect to low maximum voltage and steady state error.

  • PDF

Position Control of Piezoelectric Flexible Arm Using Fuzzy Algorithms (퍼지이론을 이용한 압전소자 플렉시블암의 위치제어)

  • 류재춘;박종국
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 1996.10a
    • /
    • pp.176-179
    • /
    • 1996
  • This paper describes the tip displacement of a flexible miniature arm controlled by the piezoelectric bimorph cells cemented on the surface of the arm. The arm is driven by the torques generated by the cells, and the endpoiht of the arm is controlled so that it moves in synchrony with the fluctuation of the target and maintains a constant distance to the surface of the traget. The voltage applied to the cells is controlled by a feedback signal composed of the tip displacement and the velocity. A theoretical solution is obtained by considering the cell-arm system as a stepped beam and applying time-discrete method to the governing equations of the system. The results are good agreement for a wide range of physical paramehers involved.

  • PDF

Fuzzy sliding-mode control of a human arm in the sagittal plane with optimal trajectory

  • Ardakani, Fateme Fotouhi;Vatankhah, Ramin;Sharifi, Mojtaba
    • ETRI Journal
    • /
    • v.40 no.5
    • /
    • pp.653-663
    • /
    • 2018
  • Patients with spinal cord injuries cannot move their limbs using their intact muscles. A suitable controller can be used to move their arms by employing the functional electrical stimulation method. In this article, a fuzzy exponential sliding-mode controller is designed to move a musculoskeletal human arm model to track an optimal trajectory in the sagittal plane. This optimal arm trajectory is obtained by developing a policy for the central nervous system. In order to specify the optimal trajectory between two points, two dynamic and static optimal criteria are applied simultaneously. The first dynamic objective function is defined to minimize the joint torques, and the second static optimization is offered to minimize the muscle forces at each moment. In addition, fuzzy logic is used to tune the sliding-surface parameter to enable an appropriate tracking performance. Simulation results are evaluated and compared with experimental data for upward and downward movements of the human arm.

Design and Implementation of Paddle Type End of Arm Tool for Rescue Robot (인명 구조용 로봇의 패들형 말단 장치 설계 및 구현)

  • Kim, Hyeonjung;Lee, Ikho;An, Jinung
    • The Journal of Korea Robotics Society
    • /
    • v.13 no.4
    • /
    • pp.205-212
    • /
    • 2018
  • This paper deals with the paddle type end of arm tool for rescue robot instead of rescue worker in dangerous environments such as fire, earthquake, national disaster and defense. It is equipped at the dual arm manipulator of the rescue robot to safely lift up an injured person. It consists of the paddle for lifting person, sensors for detecting insertion of person onto the paddle, sensor for measuring the tilting angle of the paddle, and mechanical compliance part for preventing incidental injuries. The electronics is comprised of the DAQ module to acquire the sensors data, the control module to treat the sensors data and to manage the errors, and the communication module to transmit the sensors data. After optimally designing the mechanical and electronical parts, we successfully made the paddle type end of arm tool and evaluated its performance by using specially designed jigs. The developed paddle type end of arm tool is going to be applied to the rescue robot for performance verification through field testing.

Development of a Specialized Underwater Leg Convertible to a Manipulator for the Seabed Walking Robot CR200 (해저 보행 로봇 CR200을 위한 매니퓰레이터 기능을 갖는 다리 개발)

  • Kang, Hangoo;Shim, Hyungwon;Jun, Bong-Huan;Lee, Pan-Mook
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.19 no.8
    • /
    • pp.709-717
    • /
    • 2013
  • This paper presents the development of a specialized underwater leg with a manipulator function(convertible-to-arm leg) for the seabed walking robot named CRABSTER200(CR200). The objective functions of the convertible-to-arm leg are to walk on the seabed and to work in underwater for precise seabed exploration and underwater tasks under coastal area with strong tidal current. In order to develop the leg, important design elements including the degree of freedom, dimensions, mass, motion range, joint structure/torque/angular-speed, pressure-resistance, watertight capability and cable protection are considered. The key elements of the convertible-to-arm leg are realized through concept/specific/mechanical design and implementation process with a suitable joint actuator/gear/controller selection procedure. In order to verify the performance of the manufactured convertible-to-arm leg, a 25bar pressure-resistant and watertight test using a high-pressure chamber and a joints operating test with posture control of the CR200 are performed. This paper describes the whole design, realization and verification process for implementation of the underwater convertible-to-arm leg.

Effects of Educational Program of Manual Lymph Massage on the Arm Functioning and the Quality of Life in Breast Cancer Patients (림프마사지 교육프로그램이 유방절제술환자의 상지 기능상태와 삶의 질에 미치는 효과)

  • Lee Eun Sook;Kim Sung Hyo;Kim Sun Mi;Sun Jeong Ju
    • Journal of Korean Academy of Nursing
    • /
    • v.35 no.7
    • /
    • pp.1390-1400
    • /
    • 2005
  • Purpose: The purpose of this study was to determine the effect of EPMLM(educational program of manual lymph massage) on the arm functioning and QOL(quality of life) in breast cancer patients with lymphedema. Method: Subjects in the experimental group(n=20) participated in EPMLM for 6 weeks from June to July, 2005. The EPMLM consisted of training of lymph massage for 2 weeks and encourage and support of self-care using lymph massage for 4 weeks. The arm functioning assessed at pre-treatment, 2weeks, and 6weeks using Arm functioning questionnaire. The QOL assessed at pre-treatment and 6 weeks using SF-36. The outcome data of experimental group was compared with control group(n=20). The collected data was analyzed by using SPSS 10.0 statistical program. Result: The arm functioning of experimental group was increased from 2 weeks after(W=.224, p=.011) and statistically differenced with control group at 2 weeks(Z=-2.241, p=.024) and 6 weeks(Z=-2.453, p=.013). Physical function of QOL domain increased in experimental group(Z=-1.162, p=.050), also statistically differenced with control group(Z=-2.182, p= .030) at 6weeks. Conclusion: The results suggest that the educational program of manual lymph massage can improve arm functioning and physical function of QOL domain in breast cancer patients with lymphedema.

Remote Control of Movable Robot Arm using Gyro Sensor and Flex Sensor (자이로센서와 플렉스 센서를 이용한 이동형 로봇팔 원격 제어)

  • Jang, Jae-Seok;Kim, Min-Soo;Kim, Seong-Jin;Lee, Cheol-Keun;Park, Hyoung-Keun
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.16 no.6
    • /
    • pp.1205-1212
    • /
    • 2021
  • Robots that can actually help people a lot by dealing with dangerous tasks that are difficult for people to do, such as disaster situations, lifesaving, handling dangerous goods, and reconnaissance of dangerous areas, continue to become an issue. Therefore, in this paper, we intend to implement a mobile robot arm that can implement a human motion will on the robot arm to enable active response according to the situation and control the vehicle according to hand movements to give mobility. A controller is manufactured using a flex sensor and agyro sensor, and the roll and pitch values of the two gyro sensors are adjusted to control the angle of the robot arm and specify the vehicle direction. In addition, by designating the levels of the three flex sensors, the motor is operated according to hand movements, and a robot arm is implemented so that objects can be picked up and moved.