• Title/Summary/Keyword: Contrast Sensitivity Function

Search Result 72, Processing Time 0.021 seconds

Effect of red ginseng on visual function and vision-related quality of life in patients with glaucoma

  • Lee, Kwanghyun;Yang, Heon;Kim, Joo Yeon;Choi, Wungrak;Seong, Gong Je;Kim, Chan Yun;Lee, Jun Mo;Bae, Hyoung Won
    • Journal of Ginseng Research
    • /
    • v.45 no.6
    • /
    • pp.676-682
    • /
    • 2021
  • Background: Red ginseng has been found to improve ocular perfusion and dry eye syndrome in glaucomatous eyes; however, its effects on visual function and vision-related quality of life have not been investigated. This study sought to evaluate the effects of red ginseng on visual function and vision-related quality of life in glaucoma patients using contrast sensitivity and a questionnaire. Methods: Participants were randomly assigned to two groups in this prospective, randomized, double-blind study: in one group, red ginseng was taken first, followed by a placebo, and in the other, placebo was taken first, followed by red ginseng. We measured and compared changes in contrast sensitivity and vision-related quality of life between the two groups. Contrast sensitivity was measured using OPTEC® 6500P, and vision-related quality of life was evaluated using the 25-item National Eye Institute Visual Function Questionnaire. One-way and two-way repeated measure analyses of variance were used for the comparison. Relationships between respective changes in dry eye syndrome and contrast sensitivity were also analyzed. Results: Daytime contrast sensitivity and ocular pain improved after the administration of red ginseng. Nighttime contrast sensitivity was improved in early or moderate glaucoma. Improved contrast sensitivity was not associated with improvement in dry eye syndrome. Conclusion: Red ginseng could improve contrast sensitivity and ocular pain in patients with glaucoma. The mechanism underlying improvement in contrast sensitivity appears to be associated with enhanced retinal perfusion or retinal ganglion cell function, but not dry eye syndrome.

Prediction of visual performance using contrast sensitivity function and modulation transfer function (대비감도함수와 변조전달함수를 이용한 시기능 예측)

  • Kim Sang Gee;Park Sung Chan
    • Korean Journal of Optics and Photonics
    • /
    • v.15 no.5
    • /
    • pp.461-468
    • /
    • 2004
  • A finite model eye of visual acuity 24/20 in emmertropia was presented. We determined the image intensity profile on retina using optical transfer function of model eye, and compared with clinical data. The retinal contrast sensitivity function based on the Stiles-Crawford effect, photopic response, diffraction, aberration, retinal contrast sensitivity, and pupil size is calculated. Visual acuity for human eye could be predicted by examining the modulation transfer function of a bar target and retinal contrast sensitivity function. This visual acuity was evaluated for pupil diameters ranging from 1 to 8 mm.

Effects of Transmittance of Diffusive Blur on Visual Acuity and Contrast Sensitivity (확산적 흐림의 투과율이 시력과 대비감도에 미치는 영향)

  • Yang, Seok-Jun;Choi, Eun Jung
    • Journal of Korean Ophthalmic Optics Society
    • /
    • v.20 no.3
    • /
    • pp.355-362
    • /
    • 2015
  • Purpose: To investigate the effects of the transmittance of diffusive blurson visual acuity and contrast sensitivity. Methods: Visual acuity and contrast sensitivity were measured by using Optec$^{(R)}$ 6500 in Healthy 30 subjects aged $22.83{\pm}0.50$ (male 13, female 17) who were recruited from university students. Cataract simulator was used as a tool for diffusive blur. Visual acuity and contrast sensitivity were measured with varying the transmittance of diffusive blur in order to simulate progression of cataract and concentration in fog. Results: Visual acuity was reduced proportionally with decreasing the transmittance of the diffusive blur as follows: $VA(T)=1.84{\times}10^{-2}T-0.645$. Contrast sensitivity was decreased in all spatial frequencies. Contrast sensitivity in a high spatial frequency band was a greater effect and was off the normal range of contrast sensitivity. The peak of contrast sensitivity was moved in the direction to low frequency. From an intersection point of contrast sensitivity function, we could calculated the transmittance of the diffusive blur being off the normal range and the shift to peak spatial frequency. The peak of contrast sensitivity function was observed to move from 6 to 3 cpd at transmittance of about 78.70%, the contrast sensitivities for all frequencies at transmittance of about 69.71% were deviated from the normal range. Conclusions: The transmittance of diffusive blur causes a reduction in visual acuity and contrast sensitivity, a deviation of normal range of contrast sensitivity, and a shift of peak contrast sensitivity. Therefore the more attention is required when suffering from cataracts or driving in fog.

Image Enhancement Using The Contrast Sensitivity Function (Contrast Sensitivity 함수를 이용한 영상화질 개선 방법)

  • Bang, Seangbae;Kim, Wonha
    • Journal of Broadcast Engineering
    • /
    • v.20 no.2
    • /
    • pp.238-247
    • /
    • 2015
  • We develop the signal processing method for adaptive implementing direction of signal and the frequency sensitivity of human visual system(HVS). Existing multibnad energy scaling method makes ringing artifact because it does not consider signal direction. To solve this problem, we use block gradient for signal direction in addition to existing method. And we use the fact that frequency component of signal is more sensitive than value of signal over human eyes. we enhance the signal according to contrast sensitivity function(CSF) which is the model of frequency sensitivity of human eye. Compared that the existing analysis models only improve the efficiencies in the existing systems, the developed method can process the image signals to be more desirable and suitable to HVS.

Signal Adaptive Contrast Sensitivity Function for Image Enhancement (Contrast Sensitivity Function을 이용한 신호에 적응적인 영상 화질 향상 기법)

  • Bang, Seang-Bae;kim, won-ha
    • Proceedings of the Korean Society of Broadcast Engineers Conference
    • /
    • 2016.06a
    • /
    • pp.275-277
    • /
    • 2016
  • 본 논문은 human visual system(HVS)에 따른 주파수 민감도와 공간에서 다양한 특성들을 구현하기 위한 신호처리 방법을 개발하였다. 인간의 눈은 주파수 성분에 따라 민감도가 다르며 초점에서 멀수록 인지 가능한 해상도가 떨어진다. 주파수 민감도를 구현하기 위해서 본 논문은 영상 신호의 에너지 스펙트럼 모양이 contrast sensitivity function(CSF)의 모양이 되도록 하여 영상 신호의 에너지를 증가시켰으며 신호 방향에 적응적인 multiband energy scaling 방법을 개발하였다. 기존의 시스템에서 능률만을 향상시키는 기존의 분석 모델과 비교하면 개발한 방법은 HVS에 좀 더 적절하고 선호되게 영상 신호를 처리할 수 있다.

  • PDF

Enhanced High Contrast Image Rendering Method Using Visual Properties for Sharpness Perception (시각 선명도 감각 특성을 이용한 개선된 고명암 대비 영상 렌더링 기법)

  • Lee, Geun-Young;Lee, Sung-Hak;Kwon, Hyuk-Ju;Sohng, Kyu-Ik
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.38A no.8
    • /
    • pp.669-679
    • /
    • 2013
  • When an image is converted from HDR (high dynamic range) to LDR (low dynamic range), a tone mapping process is the essential component. Many TMOs (tone mapping operators) have been motivated by human vision which has lower physical luminance range than that in real scene. The representative of human vision properties which motivate TMOs is the local adaptation. However, TMOs are ultimately compressing image information such as contrast, saturation, etc. and the compression causes defects in image quality. In this paper, in order to compensate the degradation of the image which is caused by TMOs, the visual acuity-based edge stop function is proposed for applying the property of human vision to base-detail separation. In addition, using CSF (contrast sensitivity function) which represents the relationship among spatial frequency, contrast sensitivity, and luminance, the sharpness filter is designed and adaptively applied to the detail layer in regard to surround luminance.

The orientation property of contrast sensitivity function (시각 콘트라스트 감도 함수의 방향성에 관한 연구)

  • 김헌수;조경미;남궁지나;오은규;김정희
    • Proceedings of the Optical Society of Korea Conference
    • /
    • 2000.02a
    • /
    • pp.154-155
    • /
    • 2000
  • 인간이 인지하는 디스플레이 화질은 디스플레이 및 시각계의 시간적·공간적 특성에 의해 결정되어진다고 한다. 이때, 시각계의 공간 특성은 공간적 콘트라스트 감도 함수(Spatial Contrast Sensitivity Function, 공간적 CSF, 이하 CSF로 표기)로 나타낼 수 있다. 일반적으로 디스플레이를 이용한 휘도 격자의 CSF는 휘도 및 시청 거리(디스플레이와 피험자간 거리)에 의한 영향을 받는다. 본 논문의 목적은 이러한 CSF의 기본 특성에 대해 검토하고, 향후 이를 디스플레이의 화질평가 척도에 이용하는 것에 있다. (중략)

  • PDF

Changes of Contrast Sensitivity with Decreasing Luminance in Photopic Conditions (명소시 상태에서 휘도 감소에 따른 대비감도 변화)

  • Lee, Eun Jin;Yoon, Moon Joo;Kim, Soo-Hyun;Yang, Gye Tak;Jeong, Ju-Hyun;Kim, Hyun Jung;Kim, Hyun Il;Choi, Eun Jung
    • Journal of Korean Ophthalmic Optics Society
    • /
    • v.17 no.4
    • /
    • pp.411-417
    • /
    • 2012
  • Purpose: To investigate changes of contrast sensitivity with decreasing luminance in photopic conditions. Methods: Contrast sensitivities for 63 university students were investigated at 5 different luminance levels using FACT chart. Results: All contrast sensitivities measured were in the normal range. The peak of contrast sensitivity function was observed to move from 6 to 3 cpd between 40 and $10cd/m^2$. From an intersection point of two hypothetical lines related with contrast sensitivity for 6 and 3 cpd, we could evaluated that the peak moved from 6 to 3 cpd at about $25cd/m^2$. When luminance decreases from 120 to $10cd/m^2$, contrast sensitivity loss at 6 cpd was most, while contrast sensitivity at 1.5 cpd changed little. We could evaluate that at luminance of more than $25cd/m^2$ evaluated approximately, contrast sensitivity was high in the following order of spatial frequency: 18< 12<1.5<3<6 cpd, while at luminance of less than about $25cd/m^2$ as follows: 18<12<1.5<6<3 cpd. Contrast sensitivity losses with decreasing luminance were also evaluated using the decrements and decrement rates of contrast sensitivity. The decrement of contrast sensitivity was the greatest at 6 cpd, while the decrement rate was the greatest at 8 cpd. Conclusions: We propose that evaluation methods used in this research may be available as another methods to evaluate the changes of contrast sensitivity.

A Study on Perceived Contrast Measure and Image Quality Improvement Method Based on Human Vision Models (시각 모델을 고려한 인지 대비 측정 및 영상품질 향상 방법에 관한 연구)

  • Choi, Jong Soo;Cho, Heejin
    • Journal of Korean Society for Quality Management
    • /
    • v.44 no.3
    • /
    • pp.527-540
    • /
    • 2016
  • Purpose: The purpose of this study was to propose contrast metric which is based on the human visual perception and thus it can be used to improve the quality of digital images in many applications. Methods: Previous literatures are surveyed, and then the proposed method is modeled based on Human Visual System(HVS) such as multiscale property of the contrast sensitivity function (CSF), contrast constancy property (suprathreshold), color channel property. Furthermore, experiments using digital images are shown to prove the effectiveness of the method. Results: The results of this study are as follows; regarding the proposed contrast measure of complex images, it was found by experiments that HVS follows relatively well compared to the previous contrast measurement. Conclusion: This study shows the effectiveness on how to measure the contrast of complex images which follows human perception better than other methods.

Spatial Luminance Contrast Sensitivity: Effects of Surround

  • Kim, Youn-Jin;Kim, Hong-Suk
    • Journal of the Optical Society of Korea
    • /
    • v.14 no.2
    • /
    • pp.152-162
    • /
    • 2010
  • This study examined the effects of surround luminance on the shape of the spatial luminance contrast sensitivity function (CSF). The reduction in brightness of uniform neutral patches shown on a computer controlled display screen is also assessed to explain the change of CSF shape. Consequently, a large amount of reduction in contrast sensitivity at middle spatial frequencies can be observed; however, the reduction is relatively small for low spatial frequencies. In general, the effect of surround luminance on the CSF appears similar to that of mean luminance. Reduced CSF responses result in less power of the filtered image; therefore, the stimulus should appear dimmer with a higher surround luminance.