• Title/Summary/Keyword: Contraction Pipe

Search Result 30, Processing Time 0.025 seconds

A Study on the Flow Loss for Sudden Expansion and Contraction Part of Circular Pipe Nozzle (원형단면 노즐의 급확대 축소부를 통한 유동손실에 대한 연구)

  • 고영하
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.24 no.6
    • /
    • pp.89-95
    • /
    • 2000
  • To obtain an exact flow loss in piping systems is very important in the face of efficiency anticipation and work control of plant. The object of this study is to get the flow loss through the experiment for sudden expansion and contraction part of circular pipe nozzle. The experiment in this study is performed after getting the flow loss factor for sudden expansion and contraction through preliminary experiments. It is confirmed that the results of this study agreed with the approximated equation of Ikeda and Matsuo. It is proved that flow loss factor ${\zeta}_3$for sudden expansion and contraction part of circular pipe is dependent on $L/D_1$in these experimental conditions.

  • PDF

A Study on Error Characteristic of Flow Disturbance and Velocity for Electromagnetic and Ultrasonic Flowmeters (유속과 유동교란인자에 의한 전자식 및 초음파식 유량계의 오차특성 연구)

  • Lee, Dong-Keun;Park, Jong-Ho
    • The KSFM Journal of Fluid Machinery
    • /
    • v.12 no.5
    • /
    • pp.33-38
    • /
    • 2009
  • In this study, the effect of flow disturbance such as contraction, expansion pipe and velocity deviation from low velocity of $0.1\;^m/s$ to $2.5\;^m/s$ on the error characteristics of the flowmeter was studied. Flow experiments using flowmeter calibration facility of K-water were undertaken for the cases of ultrasonic flowmeter based on transit-time method and electromagnetic flowmeter. Experimental results are presented that measurement error of expansion pipe are larger than contraction pipe. It is shown that the minimum straight length were required to remain of ${\pm}0.5%$ error for electromagnetic flowmeter and ${\pm}2.0%$ error for ultrasonic flowmeter.

Study on the Physical Characteristics of Water Supply Steel Pipe according to Temperature Change (수도용 강관의 온도변화에 따른 물리적 특성에 대한 연구)

  • Kim, Woo-young;Jang, Am
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.39 no.12
    • /
    • pp.733-740
    • /
    • 2017
  • 'The facilities standards of water supply' issued by the Ministry of Environment in 2004 indicates that expansion joints cannot be used in welding water supply steel pipes. However, their reason is not clear and it is difficult to confirm the stability of the steel pipe for a water supply pipeline. The purpose of this study is to determine whether or not an expansion joint is necessary to improve the stability of water supply in steel pipe through a displacement analysis of the pipework. The test results are as follows. Firstly, it was found that expansion and contraction of the water supply steel pipe (D 2,400 mm) occur repeatedly in 4 cycles per year, and the maximum expansion and contraction amount of the pipe is 13.03 mm in 1.24 km pipelines. Secondly, the thermal stress caused by expansion and contraction of the steel pipe is $13.7{\sim}36.1kgf/cm^2$ according to the burial depth (0~4 m). The main comparison factors to determine the stability of the steel pipe (STWW 400) were the allowable tensile strength and the fatigue limit, which were computed to be $4,100kgf/cm^2$ and $1,840kgf/cm^2$, respectively. Finally, the thermal stress of the steel pipe is very small compared to the allowable tensile stress and fatigue stress. Therefore, thermal stress does not affect the stability of the steel pipe, although the expansion and contraction of the steel pipe occurs by temperature changes. In conclusion, the study demonstrated that expansion joints are not required in water supply steel pipelines.

Characteristics of Multipath Ultrasonic Flowmeter Installed Upstream and Downstream of Flow Disturbance Factors-Contraction, Expansion, and Tee Pipe (유동교란인자(축소·확대관, Tee관)상하류에 설치된 다회선초음파 유량계의 특성)

  • Lee, Dong-Keun;Cho, Yong
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.36 no.8
    • /
    • pp.877-883
    • /
    • 2012
  • Multipath ultrasonic flowmeters are increasingly being used for the purpose of accurate flow measurement. However, an installation standard has not yet been established for these flowmeters, and this can cause considerable confusion during field installation. There is a need for a minimum straight run to ensure the measurement accuracy of a flowmeter installed upstream and downstream of flow disturbance factors-expansion, contraction, and tee pipes. Experiments were performed by using multipath flowmeters that have less than ${\pm}0.5%$ accuracy-4-paths 1-unit and 2-paths 1-unit are of foreign make, whereas 5-paths 2-units are of domestic make-to determine the straight run under the above conditions. We carried out experiments repeatedly by considering a straight run, velocity, and suggested installation standards for a multipath ultrasonic flowmeter that satisfies the tolerance limits.

Flow Characteristics of Ice Slurry in Special Pipings (특수배관에서의 아이스슬러리 유동특성)

  • Lee Dong Won;Yoon Chan Il;Im Hyo Mook
    • Proceedings of the KSME Conference
    • /
    • 2002.08a
    • /
    • pp.401-402
    • /
    • 2002
  • The flow characteristics of ice slurry which was made from $6.5{\%}$ ethylene glycol-water solution flowing in the special pipings including the enlargement, the contraction and the orifice were experimentally investigated. The flow patterns and the pressure drops were measured in acrylic pipes when the fraction of ice were varied from $0\;to\;30{\%}$. The pressure drop behavior of the contraction and the orifice appears to be similar to that of the elbow pipe, since these piping may provide similar frictional resistance to the elbow. In the mean while, the pressure drop increased unexpectedly high with the Ice fraction in the enlargement pipe. It seems that the onset of sharp increase in the pressure drop depends on the flowing time as well as the ice fraction and the flow rate.

  • PDF

Numerical Analysis of Pulsating Heat Pipe Based on Separated Flow Model

  • Kim Jong-Soo;Im Yong-Bin;Bui Ngoc Hung
    • Journal of Mechanical Science and Technology
    • /
    • v.19 no.9
    • /
    • pp.1790-1800
    • /
    • 2005
  • The examination on the operating mechanism of a pulsating heat pipe (PHP) using visualization revealed that the working fluid in the PHP oscillated to the axial direction by the contraction and expansion of vapor plugs. This contraction and expansion is due to the formation and extinction of bubbles in the evaporating and condensing section, respectively. In this paper, a theoretical model of PHP was presented. The theoretical model was based on the separated flow model with two liquid slugs and three vapor plugs. The results show that the diameter, surface tension and charge ratio of working fluid have significant effects on the performance of the PHP. The following conclusions were obtained. The periodic oscillations of liquid slugs and vapor plugs were obtained under specified parameters. When the hydraulic diameter of the PHP was increased to d=3mm, the frequency of oscillation decreased. By increasing the charging ratio from 40 to 60 by volume ratio, the pressure difference between the evaporating section and condensing section increased, the amplitude of oscillation reduced, and the oscillation frequency decreased. The working fluid with higher surface tension resulted in an increase in the amplitude and frequency of oscillation. Also the average temperature of vapor plugs decreased.

Theoretical Modeling of Oscillation Characteristics of Oscillating Capillary Tube Heat Pipe

  • Bui, Ngoc-Hung;Kim, Jong-Soo;Jung, Hyun-Seok
    • International Journal of Air-Conditioning and Refrigeration
    • /
    • v.11 no.1
    • /
    • pp.1-9
    • /
    • 2003
  • The examinations of the operating mechanism of an oscillating capillary tube heat pipe (OCHP) using the visualization method revealed that the working fluid in the OCHP oscillated to the axial direction by the contraction and expansion of vapor plugs. The contraction and expansion were due to the formation and extinction of bubbles in the evaporating and condensing part, respectively The actual physical mechanism, whereby the heat which was transferred in such an OCHP was complex and not well understood. In this study, a theoretical model of the OCHP was developed to model the oscillating motion of working fluid in the OCHP. The differential equations of two-phase flow were applied and simultaneous non-linear partial differential equations were solved. From the analysis of the numerical results, it was found that the oscillating motion Of working fluid in the OCHP was affected by the operation and design conditions such as the heat flux, the charging ratio of working fluid and the hydraulic diameter of flow channel. The simulation results showed that the proposed model and solution could be used for estimating the operating mechanism in the OCHP.

Drag Reducton of Pipe Wall For Fluid Flow due to Injected Polymer Solution - III. Consideration of Entrance Region Flow of Drag Reducing Fluids- (고분자용액에 의한 유체수송관벽의 저항감소 -III. 저항감소유체의 입구흐름 영역에 대한 고찰-)

  • 김영보;유경옥
    • Fire Science and Engineering
    • /
    • v.5 no.2
    • /
    • pp.21-35
    • /
    • 1991
  • As a part of studies of drag reduction phenomenon, at the entrance flow region of abrupt contraction tube flowing water, dilute and concentrated drag reducing polymer solutions contraction losses are estimated experimentally. Futher more, entrance lengths are considered theoretically and are measured experimentally. In the present experiment, fluid temperature is fixed l$0^{\circ}C$ and flow rates are 3,000

  • PDF

A Study on Removing the Magnetic Impurity in a Nuclear Pipe Line (원전 배관 내부유체의 자성 이물질 제거에 관한 연구)

  • Choi, Yoon-Hwan;Kim, Oh-Kuen;Suh, Yong-Kweon
    • 유체기계공업학회:학술대회논문집
    • /
    • 2002.12a
    • /
    • pp.499-503
    • /
    • 2002
  • This work focuses on eliminating tiny particles from the coolant in a nuclear pipe line by using a permanent magnet on the exterior surface of the pipe. This method have some merits compared with the many applied methods and is expected to be applied to most of the pipe lines in the nuclear plant. For instance in this method, a ring is attached to the exterior surface of the pipe, so that it does not affect the inflows directly. Further, the cost needed in the initial build-up of the facility is low.

  • PDF

A study on the stress and strain during welding of plate-to-pipe joint (평판-관 구조물 용접시 발생하는 응력 및 변형율에 관한 연구)

  • 나석주;김형완
    • Journal of Welding and Joining
    • /
    • v.4 no.2
    • /
    • pp.30-39
    • /
    • 1986
  • In manufacturing of pipe walls for boiler units, distortion can result in pipe-web-pipe joints from the nonuniform expansion and contraction of the weld metal and the adjacent base metal during heating and cooling cycle of the welding process. In this study, the stresses and strains during longitudinal welding of the plate-to-pipe joint were investigated. Using the method of successive elastic solution, longitudinal stresses and strains during and after welding were calculated from the information of temperature distributions obtained by Rosenthal's equations. In order to confirm the validity of the numerical results, the temperature and residual stress distributions were measured and compared with the calculated results. In spite of some assumptions, the one-dimensional analytical results of residual stresses were in fairly good agreement with the experimental ones. The residual stresses due to welding of plate-to-pipe joints are tensile near the weld line and compressive in the base metal as in the welding of plates. the amount and distribution of residual stresses were deeply dependent on the heat input ratio of the plate and pipe.

  • PDF