• 제목/요약/키워드: Contractile activity

검색결과 123건 처리시간 0.026초

Stage specific transcriptome profiles at cardiac lineage commitment during cardiomyocyte differentiation from mouse and human pluripotent stem cells

  • Cho, Sung Woo;Kim, Hyoung Kyu;Sung, Ji Hee;Han, Jin
    • BMB Reports
    • /
    • 제54권9호
    • /
    • pp.464-469
    • /
    • 2021
  • Cardiomyocyte differentiation occurs through complex and finely regulated processes including cardiac lineage commitment and maturation from pluripotent stem cells (PSCs). To gain some insight into the genome-wide characteristics of cardiac lineage commitment, we performed transcriptome analysis on both mouse embryonic stem cells (mESCs) and human induced PSCs (hiPSCs) at specific stages of cardiomyocyte differentiation. Specifically, the gene expression profiles and the protein-protein interaction networks of the mESC-derived platelet-derived growth factor receptor-alpha (PDGFRα)+ cardiac lineage-committed cells (CLCs) and hiPSC-derived kinase insert domain receptor (KDR)+ and PDGFRα+ cardiac progenitor cells (CPCs) at cardiac lineage commitment were compared with those of mesodermal cells and differentiated cardiomyocytes. Gene Ontology and Kyoto Encyclopedia of Genes and Genomes pathway analyses revealed that the genes significantly upregulated at cardiac lineage commitment were associated with responses to organic substances and external stimuli, extracellular and myocardial contractile components, receptor binding, gated channel activity, PI3K-AKT signaling, and cardiac hypertrophy and dilation pathways. Protein-protein interaction network analysis revealed that the expression levels of genes that regulate cardiac maturation, heart contraction, and calcium handling showed a consistent increase during cardiac differentiation; however, the expression levels of genes that regulate cell differentiation and multicellular organism development decreased at the cardiac maturation stage following lineage commitment. Additionally, we identified for the first time the protein-protein interaction network connecting cardiac development, the immune system, and metabolism during cardiac lineage commitment in both mESC-derived PDGFRα+ CLCs and hiPSC-derived KDR+PDGFRα+ CPCs. These findings shed light on the regulation of cardiac lineage commitment and the pathogenesis of cardiometabolic diseases.

기니피그 유문부 윤상근의 자발적 수축 및 서파에 대한 nitric oxide의 억제적 작용과 Ca2+ 및 K+ 통로의 관련성 (Involvement of Ca2+ and K+ channels in the action of NO on gastric circular muscle)

  • 김태완;라준호;양일석
    • 대한수의학회지
    • /
    • 제41권4호
    • /
    • pp.485-495
    • /
    • 2001
  • It was investigated whether $Ca^{2+}$ and $K^+$ channels were involved in the inhibitory action of nitric oxide (NO) on the contractile and slow wave activity of guinea pig gastric antral circular muscle. The gastric antral circular muscle showed spontaneous phasic contraction and slow wave. NO donors, 3-morpholinosydnonimine hydrochloride (SIN-1, $0.01{\sim}100{\mu}M$) and S-nitroso-L-cysteine (CysNO, $0.001{\sim}10{\mu}M$), reduced not only the amplitude of phasic contraction but also that of slow wave in a concentration-dependent manner. Both the perfusion of $Ca^{2+}$-free solution and the administration of $Ni^{2+}$, a nonselective $Ca^{2+}$ channel blocker, reduced the phasic contraction as well as the amplitude and frequency of the slow wave. The effects of these treatments were similar to those of NO donors. Nifedipine ($10{\mu}M$), a specific L-type $Ca^{2+}$ channel blocker, abolished the phasic contraction and remarkably reduced the plateau of slow wave but had no profound effect on the upstroke of slow wave. In the whole-cell patch clamp mode, CysNO shifted the steady-state activation curve for L-type $Ca^{2+}$ current to the right and the steady-state inactivation curve to the left. Pretreatment of various $K^+$ channel blockers such as tetraethylammonium (1 mM), 4-aminopyridine (0.5 mM), glibenclamide (10 mM), apamin ($0.1{\mu}M$), and iberiotoxin ($0.1{\mu}M$) did not affect the inhibitory action of SIN-1. These results suggest that NO donors suppress mechanical and electrical activity of guinea pig gastric antral circular muscle by inhibition of L-type $Ca^{2+}$ channel rather than by activation of $K^+$ channels.

  • PDF

Altered Vascular Calcium Regulation in Hypertension

  • Kim, Won-Jae;Lee, Jong-Un;Park, Yong-Hyun;Nam, Sang-Chae
    • The Korean Journal of Physiology and Pharmacology
    • /
    • 제1권5호
    • /
    • pp.529-535
    • /
    • 1997
  • The present study was aimed at investigating whether the vascular calcium regulation is altered in hypertension. Two-kidney, one clip (2K1C) and deoxycorticosterone acetate (DOCA)-salt hypertension were made in rats, and their thoracic aortae were taken 4 weeks later. The isometric contractile response and calcium uptake of the endothelium-denuded aortic preparations were determined. Caffeine ($0.1{\sim}35\;mmol/L$) induced a greater contraction in 2K1C and DOCA-salt hypertension than in normotensive control. When the vascular calcium store was functionally-depleted by a repeated exposure to caffeine, it took longer to reload the store and to resume the initial contraction force in response to caffeine in both 2K1C and DOCA-salt hypertension. The vascular $^{45}Ca$ uptake following the functional depletion of the cellular store was also greater in both models of hypertension than in control. Ryanodine, calcium channel activator of the sarcoplasmic reticulum, attenuated the restoration of caffeine-induced vascular contraction, which was not affected by either 2K1C or DOCA-salt hypertension. Nifedipine, an L-type $Ca^{2+}$ channel blocker, attenuated the restoration of caffeine-induced contraction, which was not affected by DOCA-salt hypertension, but was more pronounced in 2K1C hypertension. Nifedipine also diminished the vascular $^{45}Ca$ uptake, which was not affected by DOCA-salt hypertension, but was more pronounced in 2K1C hypertension. Ouabain, a $Na^+,\;K^+-ATPase$ inhibitor, increased the caffeine-induced contraction by a similar magnitude in control and 2K1C hypertension, which was, however, markedly attenuated in DOCA-salt hypertension. Ouabain enhanced the vascular $^{45}Ca$ uptake, the degree of which was not affected by 2K1C hypertension, but was markedly attenuated in DOCA-salt hypertension compared with that in control. Cyclopiazonic acid, a selective inhibitor of $Ca^{2+}-ATPase$ of the sarcoplasmic reticulum, attenuated the restoration of caffeine-induced contraction, which was not affected by 2K1C hypertension, but was more marked in DOCA-salt hypertension. These results suggest that the increased vascular calcium storage may be attributed to an enhanced calcium influx in 2K1C hypertension, and to an impaired $Na^+-K^+$ pump activity of the cell membrane and subsequently increased calcium pump activity of the cellular store in DOCA-salt hypertension.

  • PDF

Unchanged Protein Level of Ryanodine Receptor but Reduced $[^3H]$ Ryanodine Binding of Cardiac Sarcoplasmic Reticulum from Diabetic Cardiomyopathy Rats

  • Lee, Eun-Hee;Seo, Young-Ju;Kim, Young-Hoon;Kim, Hae-Won
    • The Korean Journal of Physiology and Pharmacology
    • /
    • 제5권5호
    • /
    • pp.397-405
    • /
    • 2001
  • The ryanodine receptor, a $Ca^{2+}$ release channel of the sarcoplasmic reticulum (SR), is responsible for the rapid release of $Ca^{2+}$ that activates cardiac muscle contraction. In the excitation-contraction coupling cascade, activation of SR $Ca^{2+}$ release channel is initiated by the activity of sarcolemmal $Ca^{2+}$ channels, the dihydropyridine receptors. Previous study showed that the relaxation defect of diabetic heart was due to the changes of the expressional levels of SR $Ca^{2+}$ATPase and phospholamban. In the diabetic heart contractile abnormalities were also observed, and one of the mechanisms for these changes could include alterations in the expression and/or activity levels of various $Ca^{2+}$ regulatory proteins involving cardiac contraction. In the present study, underlying mechanisms for the functional derangement of the diabetic cardiomyopathy were investigated with respect to ryanodine receptor, and dihydropyridine receptor at the transcriptional and translational levels. Quantitative changes of ryanodine receptors and the dihydropyridine receptors, and the functional consequences of those changes in diabetic heart were investigated. The levels of protein and mRNA of the ryanodine receptor in diabetic rats were comparable to these of the control. However, the binding capacity of ryanodine was significantly decreased in diabetic rat hearts. Furthermore, the reduction in the binding capacity of ryanodine receptor was completely restored by insulin. This result suggests that there were no transcriptional and translational changes but functional changes, such as conformational changes of the $Ca^{2+}$ release channel, which might be regulated by insulin. The protein level of the dihydropyridine receptor and the binding capacity of nitrendipine in the sarcolemmal membranes of diabetic rats were not different as compared to these of the control. In conclusion, in diabetic hearts, $Ca^{2+}$ release processes are impaired, which are likely to lead to functional derangement of contraction of heart. This dysregulation of intracellular $Ca^{2+}$ concentration could explain for clinical findings of diabetic cardiomyopathy and provide the scientific basis for more effective treatments of diabetic patients. In view of these results, insulin may be involved in the control of intracellular $Ca^{2+}$ in the cardiomyocyte via unknown mechanism, which needs further study.

  • PDF

내소산(內消散)의 정상 및 위 유문부 확장 흰 쥐의 위 운동성에 대한 효능 (Effect of Naeso-san on Gastric Motility between Normal Intact and Antral Dilatated Rats)

  • 김진석;윤상협
    • 대한한방내과학회지
    • /
    • 제29권1호
    • /
    • pp.117-129
    • /
    • 2008
  • Background & Objective : Naeso-san(NSS) has been used for the treatment of functional dyspepsia, regarded as a gastric dysmotility disease. A main cause of gastric dysmotility is antral dilatation or antroduodenal uncoordination. Therefore, we investigated the effect of NSS on gastric motility and its mechanism of action, as well as the morphologic changes in antral dilatated rats. Methods : Antral dilatated rats were induced by wrapping a nonabsorbable rubber ring(D:6mm, W:4mm, T:1mm) around the 1st portion of the duodenum for 8 weeks. Then morphologic changes were investigated and compared with normal intact rats before and after 8 weeks. Gastric emptying was measured by administration of normal saline(NS) or NSS in normal intact and antral dilatated rats. In another series of experiments to evaluate the mechanism of NSS under delayed conditions, normal intact rats were treated with atropine sulfate(1mg/kg, s.c.), quinpirole HCl(0.3mg/kg, i.p.), $NAME(N^{G}-nitro-L-arginine$ methyl ester, 75mg/kg, s.c.) and cisplatin(10mg/kg, i.p.), respectively. The myoelectrical activity of the gastric smooth muscle was recorded in normal intact and antral dilatated rats. The contractile waves were measured for 30 minutes before and after administration of each solution(NS, NSS). Results : Body weight gain of antral dilatated rats was significantly lower than that of the controls. Futhermore, we found the thickness of the mucosal and muscular layers and surface area of the stomach increased significantly compared with controls. NSS 278㎎/㎏ improved gastric emptying more than normal saline or NSS 93mg/kg in normal intact(p=0.026) and antral dilatated rats(p=0.03). NSS enhanced gastric emptying significantly in the NAME treated group(p=0.002). NSS 278mg/kg increased the significant postprandial dominant power than that of NS in normal intact rats, whereas there was no statistical significance in antral dilatated rats. Conclusions : NSS stimulates gastric motility through the cholinergic pathway. We expect that pathologic model with antral dilatation can be used as an exprimental tool which is similar to dyspepsia and NSS would be effective especially in dysmotility-like functional dyspepsia with antral dilatation or impaired reservoir functions such as gastric adaptive relaxation.

  • PDF

Myomodulin A 및 유도체들의 합성 및 생리활성 (Synthesis and Biological Activities of Myomodulin A and Its Analogs)

  • 박남규
    • 생명과학회지
    • /
    • 제22권3호
    • /
    • pp.387-397
    • /
    • 2012
  • 군소인 Aplysia kurodai의 중추신경절로부터 정제된 myomodulin A (MMA)가 정제되었다. MMA의 일차구조는 Pro-Met-Ser-Met-Leu-Arg-Leu-$NH_2$이며, 이 펩타이드는 다른 연체동물에서 발견된 myomodulin 계열의 펩타이드와 같은 구조를 지닌다. 정제된 MMA는 Mytilus edulis의 anterior byssus retractor muscle (ABRM)에서 phasic contraction을 조절하는 것으로 나타났다. MMA의 구조와 활성간의 상관관계를 알아보기 위해서 MMA, Des[$Pro^1$]-MMA, Des[$Pro^1,Met^2$]-MMA, Des[$Pro^1,Met^2,Ser^3$]-MMA 및 MME를 합성하였다. Des[$Pro^1$]-MMA, Des[$Pro^1,Met^2$]-MMA 및 Des[$Pro^1,Met^2,Ser^3$]-MMA의 일차구조는 각각 Met-Ser-Met-Leu-Arg-Leu-$NH_2$, Ser-Met-Leu-Arg-Leu-$NH_2$ 및 Met-Leu-Arg-Leu-$NH_2$이다. MMA 및 합성 물질들을 사용하여 ABRM 및 Achatinafulica의 소낭과 penial retractor muscle에 대해 활성을 측정하였다. MMA는 $1{\times}10^{-8}$ M 또는 더 낮은 농도에서 ABRM의 수축활성을 증가시키는 것으로 나타났지만, $1{\times}10^{-8}$ M 또는 고농도에서는 phasic contraction을 억제하였다. MMA와 유도체들은 소낭에 대해서는 수축반응을 보였지만, penial retractor muscle에 대해서는 이완 활성을 나타내었다. 이러한 결과들은 MMA의 C-말단부위에 있는 Met-Leu-Arg-Leu-$NH_2$가 ABRM의 수축반응뿐만 아니라 연체동물의 생식기능 및 소화 활성을 조절하기 필요한 최소한의 구조라는 것을 나타낸다.

제브라피쉬 근육성장에서의 carnosic acid의 효과 (Effects of Carnosic Acid on Muscle Growth in Zebrafish (Danio rerio))

  • 김정환;진덕희;김영대;진형주
    • 한국어류학회지
    • /
    • 제26권3호
    • /
    • pp.171-178
    • /
    • 2014
  • 로즈마리의 주요 성분인 carnosic acid는 carnosol, rosmarinic acid, ursolic acid 등과 같은 폴리페놀의 한 성분으로 다양한 생리활성 기능이 보고되어 있다. 본 연구에서는 로즈마리 유래 폴리페놀인 carnosic acid가 제브라피쉬 근육성장에 미치는 영향을 근육 내 주사와 사료를 통해서 확인해 보았다. 근육 내 주사 실험을 통해서 CA는 제브라 피쉬의 근육 내 단백질 함량을 증가시키고 중성지방의 함량을 감소시켰다. 또한 조직학적 분석 결과 근섬유의 평균 면적이 커지는 근섬유의 과비대 효과를 나타내었다. 사료 실험 결과 근육 내 단백질 및 중성지방의 함량에는 영향을 미치지 않았으며 조직학적 분석 결과 근육 내 주사 실험에서와 마찬가지로 근 섬유의 과비대를 유도하였다.

산사(山査)가 토끼 음경해면체의 수축에 미치는 영향 (Effects of Crataegii fructus on the Contractile Response of Rabbit Corpus Cavernosum)

  • 이한석;박선영
    • 동의생리병리학회지
    • /
    • 제27권5호
    • /
    • pp.602-610
    • /
    • 2013
  • This study was aimed to evaluate the cavernosal relaxation effect of Crataegii fructus(CF) in the contracted rabbit penile corpus cavernosum by agonists.In order to study the effect of CF on the vasoconstriction of rabbit penile corpus cavernosum, isolated rabbit penile corpus cavernosum tissues were used for the experiment using organ baths containing Krebs solution.To investigate the cavernosal relaxation of CF, CF extract at $0.01{\sim}3.0mg/m{\ell}$ was added after penile corpus cavernosum were contracted by norepinephrine(NE) $1{\mu}M$. To analyze the mechanism of CF's vasorelaxation, CF extract infused into contracted penile tissues by NE after each treatment of indomethacin(IM), $N{\omega}$-nitro-L-arginine(L-NNA), methylene blue(MB), tetraethylammonium chloride(TEA).To study the effect of CF on influx of extracellular calcium chloride($Ca^{2+}$) in penile tissues, in $Ca^{2+}$-free krebs solution, $Ca^{2+}$ 1 mM infused into contracted penile tissues by NE after pretreatment of CF. Cytotoxic activity of CF on human umbilical vein endothelial cell(HUVEC) was measured by MTT assay, and nitric oxide(NO) prodution was measured by Griess reagent. CF relaxed cavernosal strip with endothelium contracted by NE, but in the strips without endothelium, CF-induced relaxation was significantly inhibited. The pretreatment of L-NNA, MB, TEA decreased significantly on the cavernosal relaxation than not-treatment of them. But the pretreatment of IM had no significant effect on the cavernosal relaxation. In $Ca^{2+}$-free krebs solution, when $Ca^{2+}$ infused into contracted penile tissues by NE, pretreatment of CF inhibit contraction induced by adding $Ca^{2+}$.NO production wasn't increased by treatment of CF on HUVEC. This findings showed that CF is effective for the relaxation of rabbit penile corpus cavernosum, and we suggest that CF relax rabbit corpus cavernosal smooth muscle through multiple action mechanisms that include increasing the release of nitric oxide from corporal sinusoidal endothelium, inhibition of $Ca^{2+}$ mobilization into cytosol from the extracellular fluid, and maybe a hyperpolarizing action.

복분자(覆盆子)의 토끼 음경해면체 평활근 이완효과 (Relaxation Effects of Rubus coreanus in Isolated Rabbit Corpus Cavernosum Smooth Muscle)

  • 박선영;이평재;신선미;김호현
    • 동의생리병리학회지
    • /
    • 제27권4호
    • /
    • pp.400-408
    • /
    • 2013
  • This study aimed to investigate the relaxation effects and its underlying mechanisms of Rubus coreanus(RC) extract in contracted rabbit corpus cavernous tissues by phenylephrine(PE) $1{\mu}M$. In order to define the relaxation effects of RC, rabbit corpus cavernous tissues were prepared in $2{\times}2{\times}6mm$ sized strip. The dose-dependent relaxation responses of RC at 0.01-3.0 $mg/m{\ell}$ in contracted strips induced by PE were measured and also observed after endothelial denudation. To analyze the underlying mechanisms of RC-induced relaxation, indomethacin(IM), tetraethylammonium chloride(TEA), $N{\omega}$-nitro-L-arginine (L-NNA), methylene blue(MB) were treated before RC extract infused into precontracted strips induced by PE. To study the effect of RC extract on influx of extracellular $Ca^{2+}$ in corpus cavernous strips, calcium chloride(Ca) 1 mM infused into precontracted strips induced by PE after pretreatment of RC extract in $Ca^{2+}$-free krebs-ringer solution. To investigate cytotoxic activity and nitric oxide(NO) concentration of RC extract on human umbilical vein endothelial cell(HUVEC), cell viability on HUVEC was measured by MTT assay, and NO concentration was measured by Griess reagent system. The cavernous strips were significantly relaxed by RC extract at 1.0 $mg/m{\ell}$, 3.0 $mg/m{\ell}$ and the relaxation responses to RC were inhibited significantly by endothelial disruption. The pretreatment of IM, TEA didn't affect RC extract-induced endothelium-dependent relaxation, but the pretreatment of L-NNA, MB reduced RC extract-induced endothelium-dependent relaxation. When $Ca^{2+}$ was supplied the cavernous strips which were precontracted by PE in a $Ca^{2+}$-free krebs-ringer solution, contraction of strips was increased, but pretreatment of RC inhibited contractile response to $Ca^{2+}$. When RC extract was applicated on HUVEC, NO concentration was increased. Our findings show that RC extract exerts a relaxing effect on corpus cavernosum in part by suppressing influx of extracellular $Ca^{2+}$ through activating the NO-cGMP system.

인체 정관의 약리학적 검색 -아드레날린성 및 콜린성 수용체의 공존과 Diazepam의 작용- (Pharmacological Studies on Human Vas Deferens -Coexistence of Adrenergic and Cholinergic Receptors, and Effect of Diazepam-)

  • 김원준;이광윤;하정희;박동춘
    • 대한약리학회지
    • /
    • 제24권2호
    • /
    • pp.189-195
    • /
    • 1988
  • 인체 정관 평활근에서 각종 자율신경전달체 수용체의 유무를 조사하고 benzodiazepine계의 진정-항불안제인 diazepam이 평활근 운동성에 미치는 작용을 관찰하기 위하여, 32내지 45세의 건강한 지원자로부터 정관절편을 얻었다. 정관 절제술은 국소마취하에 시행되었고, 정관절편의 수축력 측정은 등장성장력측정기에 의하였다. 적출장기실험조 내에서 정관절편의 자율수축은 관찰되지 않았으나, norepinephrine에 대한 반응성은 $33^{\circ}C$에서 가장 예민하였던 바, 이 norepinephrine에 의한 농도의존적 수축력증가작용은 알파-아드레날린성 차단제인 phentolamine에 의해 억제되었다. 또 인체 정관절편은 본 실험의 조건하에서 isoproterenol 의하여 수축하였고, 이 수축작용은 베타-아드레날린성 차단제인 propranolol 의하여 완전히 제거되었다. 동시에 인체 정관절편은 acetylcholine에의해서도 비교적 강하게 수축하였고, 이 수축작용은 콜린성 무스카린성 차단제인 atropine에 의하여 완전히 억제되었다. Diazepam은 norepinephrine에 의한 수축을농도 의존적으로 억 제 하였다. 이상의 결과를 종합하면, 인체 정관 평활근은 체온보다 낮은 $33^{\circ}C$에서 그 활동성이 가장 강하고, 자율신경에 대하여서는 아드레날린성 및 콜린성 수용체가 공존하고 있으며, diazepam은 그 수축력을 약화시킨다고 사료된다.

  • PDF