DOI QR코드

DOI QR Code

Synthesis and Biological Activities of Myomodulin A and Its Analogs

Myomodulin A 및 유도체들의 합성 및 생리활성

  • Park, Nam-Gyu (Department of Biotechnology, Fisheries Science College, Pukyong National University)
  • 박남규 (부경대학교 수산과학대학 생물공학과)
  • Received : 2011.12.21
  • Accepted : 2012.01.25
  • Published : 2012.03.30

Abstract

In this study, we focused on myomoduline A (MMA) released from the central nervous system of Aplysia kurodai. The primary structure of MMA is Pro-Met-Ser-Met-Leu-Arg-Leu-$NH_2$. This peptide is the same as that of the myomodulin family peptide found in other mollusks. The purified MMA showed a modulating activity of phasic contraction on the anterior byssus retractor muscle (ABRM) of Mytilus edulis. In order to study the relationship between the structure and biological activity of MMA, we synthesized MMA, Des[$Pro^1$]-MMA, Des[$Pro^1,Met^2$]-MMA, Des[$Pro^1,Met^2,Ser^3$]-MMA, and MME. The amino acid sequences of Des[$Pro^1$]-MMA, Des[$Pro^1,Met^2$]-MMA, and Des[$Pro^1,Met^2,Ser^3$]-MMA were Met-Ser-Met-Leu-Arg-Leu-$NH_2$, Ser-Met-Leu-Arg-Leu-$NH_2$, and Met-Leu-Arg-Leu-$NH_2$, respectively. MMA and synthetic peptides were tested on ABRM in M. edulis as well as muscle preparations in Achatina fulica. At $1{\times}10^{-8}$ M or lower, MMA showed a potentiating effect on phasic contraction of the ABRM, but this peptide had an inhibitory effect at $1{\times}10^{-6}$ M or higher. Both MMA and its analogs stimulated a contractile response on the crop and a relaxed catch-relaxing response on the penial retractor muscle of A. fulica. These results suggest that Met-Leu-Arg-Leu-$NH_2$ in MMA is the minimum structure required for the regulation of the contraction of ABRM, as well as the reproductive and digestive activities of mollusks.

군소인 Aplysia kurodai의 중추신경절로부터 정제된 myomodulin A (MMA)가 정제되었다. MMA의 일차구조는 Pro-Met-Ser-Met-Leu-Arg-Leu-$NH_2$이며, 이 펩타이드는 다른 연체동물에서 발견된 myomodulin 계열의 펩타이드와 같은 구조를 지닌다. 정제된 MMA는 Mytilus edulis의 anterior byssus retractor muscle (ABRM)에서 phasic contraction을 조절하는 것으로 나타났다. MMA의 구조와 활성간의 상관관계를 알아보기 위해서 MMA, Des[$Pro^1$]-MMA, Des[$Pro^1,Met^2$]-MMA, Des[$Pro^1,Met^2,Ser^3$]-MMA 및 MME를 합성하였다. Des[$Pro^1$]-MMA, Des[$Pro^1,Met^2$]-MMA 및 Des[$Pro^1,Met^2,Ser^3$]-MMA의 일차구조는 각각 Met-Ser-Met-Leu-Arg-Leu-$NH_2$, Ser-Met-Leu-Arg-Leu-$NH_2$ 및 Met-Leu-Arg-Leu-$NH_2$이다. MMA 및 합성 물질들을 사용하여 ABRM 및 Achatinafulica의 소낭과 penial retractor muscle에 대해 활성을 측정하였다. MMA는 $1{\times}10^{-8}$ M 또는 더 낮은 농도에서 ABRM의 수축활성을 증가시키는 것으로 나타났지만, $1{\times}10^{-8}$ M 또는 고농도에서는 phasic contraction을 억제하였다. MMA와 유도체들은 소낭에 대해서는 수축반응을 보였지만, penial retractor muscle에 대해서는 이완 활성을 나타내었다. 이러한 결과들은 MMA의 C-말단부위에 있는 Met-Leu-Arg-Leu-$NH_2$가 ABRM의 수축반응뿐만 아니라 연체동물의 생식기능 및 소화 활성을 조절하기 필요한 최소한의 구조라는 것을 나타낸다.

Keywords

References

  1. Benarroch, E. E. 1994, Neuropeptides in the sympathetic system: Presence, plasticity, modulation and implications. Ann. Neurol. 36, 6-13. https://doi.org/10.1002/ana.410360105
  2. Brezina, V., B. Bank, E. C. Cropper, S. Rosen, F. S. Vilim, I. Kupfermann, and K. R. Weiss. 1995. Nine members of the myomodulin family of peptide cotransmitters at the Bl6-ARC neuromuscular junction of Aplysia. J. Neuophys. 74, 54-72.
  3. Brown, R. E. 1994. An introduction to neuroendocrinology. ed. Cambridge University Press, London, U.K.
  4. Christie, A. E., C. Hall, M. Oshinsky, and E. Marder. 1994. Buccalin-like and myomodulin-like peptides in the stomatogastric ganglion of the crab Cancer borealis. J. Exp. Biol. 193, 337-343.
  5. Church, P. J. and P. E. Lloyd. 1991. Expression of diverse neuropeptide cotransmitters by identified motor neurons in Aplysia. J. Neurosci. 11, 618-625.
  6. Cohen, J. L., K. R. Weiss, and I. Kupfermann. 1978. Motor control of buccal muscles in Aplysia. J, Neurophysiol. 41, 157-180.
  7. Critz, S. D., D. A. Baxter, and J. H. Byrne. 1991. Modulatory effects of serotonin, FMRFamide, and myomodulin on the duration of action potentials, excitability, and membrane currents in tail sensory neurons of Aplysia. J. Neurophys. 66, 1912-1926.
  8. Cropper, E. C., P. E. Lloyd, W. Reed, R. Tenenbaum, I. Kupfermann, and K. R. Weiss. 1987. Multiple neuropeptides in cholinergic motor neurons of Aplysia: evidence for modulation intrinsic to the motor circuit. Proc. Natl. Acad. Sci. USA 84, 3486-3490. https://doi.org/10.1073/pnas.84.10.3486
  9. Cropper, E. C., M. W. Miller, R. Tenenbaum, M. A. G. Kolks, I. Kupfermann, and K. R. Weiss. 1988. Structure and action of buccalin: a modulatory neuropeptide localized to an identified small cardioactive peptide containing cholinergic motor neuron of Aplysia californica. Proc. Natl. Acad. Sci. USA 85, 6177-6181 https://doi.org/10.1073/pnas.85.16.6177
  10. Cropper, E. C., M. W. Miller, F. S. Vilim, R. Tenenbaum, I. Kupfermann, and K. R. Weiss. 1990. Buccalin is present in the cholinergic motor neuron B16 of Aplysia and it depresses accessory radula closer muscle contractions evoked by stimulation of B16. Brain Res. 512, 175-179. https://doi.org/10.1016/0006-8993(90)91189-N
  11. Cropper, E. C., D. Price, R. Tenenbaum, I. Kupfermann, and K. R. Weiss. 1990. Release of peptide cotransmitters from a cholinergic motor neuron under physiological conditions. Proc. Natl. Acad. Sci. USA 87. 933-937. https://doi.org/10.1073/pnas.87.3.933
  12. Cropper, E. C., R. Tenenbaum, M. A. G. Kolks, I. Kupfermann, and K. R. Weiss. 1987. Myomodulin : A bioactive neuropeptide present in an identified cholinergic buccal motor neuron of Aplysia. Proc. Natl. Acad. Sci. USA 84, 5483-5486. https://doi.org/10.1073/pnas.84.15.5483
  13. Cropper, E. C., F. S. Vilim, A. Alevizos, R. Tenenbaum, M. A. G. Kolks, S. Rosen, I. Kupfermann, and K. R. Weiss. 1991. Structure, bioactivity and cellular localization of myomodulin B: A novel Aplysia peptide. Peptides 12, 683-690. https://doi.org/10.1016/0196-9781(91)90120-E
  14. Evans P. D. 1994 The effects of myomodulin and structurally related neuropeptides on skeletal neuromuscular transmission in the locust. J. Exp. Biol. 190, 253-264.
  15. Feany, M. B. 1996. Neuropeptide modulation of learning and memory processes. Rev. Neurosci. 7, 151-164. https://doi.org/10.1515/REVNEURO.1996.7.2.151
  16. Fujisawa, Y., I. Kubota, T. Ikeda, H. Minakata, and Y. Muneoka. 1991. A variety of Mytilus inhibitory peptides in the ABRM of Mytilus edulis: Isolation and characterization. Comp. Biochem. Physiol. 100C, 525-531.
  17. Fujiwara-Sakata and M. Kobayashi. 1992. Neuropeptides regulate the cardiac activity of a prosobranch mollusc, Rapana thomasiana. Cell Tissue Res. 269, 241-247. https://doi.org/10.1007/BF00319615
  18. Greenberg, M. J., K. E. Doble, W. Lesser, T. D. Lee, N. A. Pennell, C. G. Morgan, and D. A. Price, 1997. Characterization of myomodulin-related peptides from the pulmonate snail Helix aspersa. Peptides 18, 1099-1106. https://doi.org/10.1016/S0196-9781(97)00149-6
  19. Hirata, T., I. Kubota, M. Imada, Y. Muneoka, and M. Kobayashi. 1989. Effects of the catch-relaxing peptide on molluscan muscles. Comp. Biochem. Physiol. 92C, 283-288.
  20. Hirata, T., I. Kubota, I. Takabatake, A. Kawahara, N. Shimamoto, and Y. Muneoka. 1987. Catch-relaxing peptide isolated from Mytilus pedal ganglia. Brain Res. 422, 374-376. https://doi.org/10.1016/0006-8993(87)90947-4
  21. Ikeda, T., H. Minakata, T. Fujita, Y. Muneoke, T. Kiss, L. Hiripi, and K. Nomoto. 1993. Neuropeptides isolated from Helix pomatia, Part 1. Peptides related to MIP, buccalin, myomodulin-CARP and SCP. In: Yanaihara N., editor. Peptide chemistry 1992. Leiden, ESCOM, 576-578.
  22. Kanda, T., Y. Kuroki, I. Kubota, Y. Muneoka, and M. Kobayashi. 1990. Neuropeptides isolated from the ganglia of a prosobranch mollusc, Fusinus ferrugineus. pp. 39-44 In Yanaihara N (ed.) Peptide chemistry 1989. Protein Research Foundation, Osaka.
  23. Kim, C. H., H. J. Seo, E. Y. Hwang, E. J. Kim, H. J. Go, I. H. Kim, J. K. Seo, J. H. Moon, M. D. Huh, and N. G. Park. 2001. Purification of myomodulin A and myomodulin E from the central nervous system of the sea hare, Aplysia kurodai. J. Kor. Fish. Soc. 34, 279-284.
  24. Kobayashi, M. and Y. Muneoka. 1986. Structural requirements for FMRFamide-like activity on the heart of the prosobranch Rapana thomasiana. Comp. Biochem. Physiol. 84C, 349-352.
  25. Lesser, W., M. J. Greenberg, K. E. Doble, T. D. Lee, C. G. Morgan, N. A. Pennell, and D. A. Price. 1992. Isolation and characterization of myomodulin-CARP-related peptides (MCRPs) in molluscs. Soc. Neurosci. Abstr. 18, 469.
  26. Li, K. W., F. A. Van Golen, J. Van Minnen, P. A. Van Veelen, J. Van der Greef, and W. P. M. Geraerts. 1994. Structural identification, neuronal synthesis, and role in male copulation of myomodulin-A of Lymnaea: a study involving direct peptide profiling of nervous tissue by mass spectrometry. Mol. Brain Res. 25, 355-358. https://doi.org/10.1016/0169-328X(94)90172-4
  27. Lloyd, P. E., I. Kupfermann, and K. R. Weiss. 1984. Evidence for parallel actions of a molluscan neuropeptide and serotonin in mediating arousal in Aplysia. Proc. Natl. Acad. Sci. USA 81, 2934-2937. https://doi.org/10.1073/pnas.81.9.2934
  28. Lopez, V., L. Wickham, and L. Desgroseillers. 1993. Molecular cloning of myomodulin cDNA, a neuropeptide precursor gene expressed in neuron L10 of Aplysia californica. DNA Cell Biol. 12, 53-61. https://doi.org/10.1089/dna.1993.12.53
  29. Miller, M. W., A. Alevizos, E. C. Cropper, F. S. Vilim, D. Karagogeos, I. Kupfermann, and K. R. Weiss. 1991. Localization of myomodulin-like immunoreactivity in the central nervous system and peripheral tissues of Aplysia californica. J. Comp. Neurol. 314, 627-644. https://doi.org/10.1002/cne.903140402
  30. Miller, M. W., S. Beushausen, A. Vitek, S. Stamm, I. Kupfermann, J. Brosius, and K. R. Weiss. 1993. The myomodulin- related neuropeptides: characterization of a gene encoding a family of peptide cotransmitters in Aplysia. J. Neurosci. 13, 3358-3367.
  31. Miller, M. W., F. S. Vilim, E. C. Cropper, A. Alevizos, R. Tenenbaum, D. Karagogeos, I. Kupfermann, and K. R. Weiss. 1990. Structure and distribution of myomodulin related neuropeptides in Aplysia. Soc. Neurosci. Abstr. 16, 307.
  32. Muneoka, Y. and H. Saito. 1986. Pharmacology of FMRFamide in Mytilus catch muscle. Comp. Biochem. Physiol. 85C, 207-214.
  33. Park, N. G., Y. Yamato, S. Lee, and G. Sugihara. 1995. Interaction of mastoparan-B from venom of a hornet in Taiwan with phospholipid bilayers and its antimicrobial activity. Biopolymers 36, 793-801. https://doi.org/10.1002/bip.360360611
  34. Puroux, J., A. Pedelaborde, and B. G. Loughton. 1993. The effect of proctolin analogues and other peptides on locust oviduct muscle contractions. Peptides 14, 1103-l109. https://doi.org/10.1016/0196-9781(93)90162-A
  35. Richimond, J. E., A. G. M. Bulloch, and K. Lukowiak. 1986. Peptidergic modulation of a neuromuscular junction in Aplysia: bioactivity and immunocytochemistry. Brain Res. 370, 159-164. https://doi.org/10.1016/0006-8993(86)91117-0
  36. Santama, N., M. Brierley, J. F. Burke, and P. R. Benjamin. 1994. Neural network controlling feeding in Lymnaea stagnalis: immunocytochemical localization of myomodulin, small cardioactive peptide, buccalin, and FMRFamide-related peptides. J. Comp. Neurol. 342, 352-365. https://doi.org/10.1002/cne.903420304
  37. Santama, N., C. H. Wheeler, J. F. Burke, and P. R. Benjamin. 1994. Neuropeptides myomodulin, small cardioactive peptide, and buccalin in the central nervous system of Lymnaea stagnalis: purification, immunoreactivity, and artifacts. J. Comp. Neurol. 342, 335-351. https://doi.org/10.1002/cne.903420303
  38. Shuttleworth, C. W. R. and K. D. Keef. 1995. Role of peptides in enteric neuromuscular transnission. Regul. Pept. 54, 101-120.
  39. Swales, L. S. and P. D. Evans. 1994. Distribution of myomodulin- like immunoreactivity in the adult and developing ventral nervous system of the locust Schistocerca gregaria. J. Comp. Neurol. 343, 263-280. https://doi.org/10.1002/cne.903430207
  40. Takahashi, T., O. Matsushima, F. Morishita, M. Fujimoto, T. Ikeda, H. Minakata, and K. Nomoto. 1994. A myomodulin-CARP related peptide isolated from a polychaete annelid, Perinereis vancaurica. Zool. Sci. 11, 33-38.
  41. van Golen, F. A., K. W. Li, S. Chen, C. R. Jimenez, and W. P. M. Geraerts. 1996. Various isoforms of myomodulin identified from the male copulatory organ of Lymnaea show overlapping yet distinct modulatory effects on the penis muscle. J. Neurochem. 66, 321-329. https://doi.org/10.1046/j.1471-4159.1996.66010321.x
  42. Vilim, F. S. and E. Ziff. 1994. Antibodies to the Aplysia neuropeptide myomodulin stain varicose processes in rat brain. Soc. Neurosci. Abstr. 20, 515.
  43. Wang, Y., D. A. Price and C. L. Sahley. 1998. Identification and Characterization of a myomodulin-like peptide in the leech. Peptides 19, 487-493. https://doi.org/10.1016/S0196-9781(97)00419-1
  44. Wang, Y., J. A. Strong, and C. L. Sahley. 1999. Modulatory effects of myomodulin on the excitability and membrane currents in retzius cells of the leech. J. Neurophysiol. 82, 216-225.
  45. Zadina, J. E., W. A. Banks, and A. J. Kastin. 1986. Central nervous system effects of peptides, 1980-1985: A cross-listing of peptides and their central actions from the first six years of the journal peptides. Peptides 7, 497-537. https://doi.org/10.1016/0196-9781(86)90020-3