• Title/Summary/Keyword: Continuum model

Search Result 514, Processing Time 0.025 seconds

A Study on Jointed Rock Mass Properties and Analysis Model of Numerical Simulation on Collapsed Slope (붕괴절토사면의 수치해석시 암반물성치 및 해석모델에 대한 고찰)

  • Koo, Ho-Bon;Kim, Seung-Hee;Kim, Seung-Hyun;Lee, Jung-Yeup
    • Journal of the Korean Geotechnical Society
    • /
    • v.24 no.5
    • /
    • pp.65-78
    • /
    • 2008
  • In case of cut-slopes or shallow-depth tunnels, sliding along with discontinuities or rotation could play a critical role in judging stability. Although numerical analysis is widely used to check the stability of these cut-slopes and shallow-depth tunnels in early design process, common analysis programs are based on continuum model. Performing continuum model analysis regarding discontinuities is possible by reducing overall strength of jointed rock mass. It is also possible by applying ubiquitous joint model to Mohr-Coulomb failure criteria. In numerical analysis of cut-slope, main geotechnical properties such as cohesion, friction angle and elastic modulus can be evaluated by empirical equations. This study tried to compare two main systems, RMR and GSI system by applying them to in-situ hazardous cut-slopes. In addition, this study applied ubiquitous joint model to simulation model with inputs derived by RMR and GSI system to compare with displacements obtained by in-situ monitoring. To sum up, numerical analysis mixed with GSI inputs and ubiquitous joint model proved to provide most reliable results which were similar to actual displacements and their patterns.

Formability Evaluation of Advanced High-strength Steel Sheets in Role Expansion Based on Combined Continuum-Fracture Mechanics (복합 연속체 파괴 역학에 기초한 초고강도강 판재의 구멍 넓힘 시험 성형성 평가)

  • Ma, N.;Park, T.;Kim, D.;Yoo, D.;Kim, Chong-Min;Chung, K.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2009.10a
    • /
    • pp.227-230
    • /
    • 2009
  • In order to predict failure behavior of advanced high-strength steel sheets (AHSS) in hole expansion tests, damage model was developed considering surface condition sensitivity (with specimens prepared by milling and punching: 340R, TRIP590, TWIP940). To account for the micro-damage initiation and evolution as well as macro-crack formation, the stress triaxiality dependent fracture criterion and rate-dependent hardening and ultimate softening behavior were characterized by performing numerical simulations and experiments for the simple tension and V-notch tests. The developed damage model and the characterized mechanical property were incorporated into the FE program ABAQUS/Explicit to perform hole expansion simulations, which showed good agreement with experiments.

  • PDF

Fractional order GL model on thermoelastic interaction in porous media due to pulse heat flux

  • Alzahrani, Faris S.;Abbas, Ibrahim A.
    • Geomechanics and Engineering
    • /
    • v.23 no.3
    • /
    • pp.217-225
    • /
    • 2020
  • In this paper, the thermoelastic interactions in a two-dimension porous body are studied. This problem is solved by using the Green and Lindsay (GL) generalized thermoelasticity model under fractional time derivative. The derived approaches are estimated. with numeral results which are applied to the porous mediums in simplifying geometrical. The bounding plane surface of the present half-space continuum is subjected to a pulse heat flux. We use the Laplace-Fourier transforms methods with the eigenvalues approach to solve the problem. The numerical solutions for the field functions are obtained numerically using the numerical Laplace inversion technique. The effects of the fractional parameter and the thermal relaxation times on the temperature field, the displacement field, the change in volume fraction field of voids distribution and the stress fields have been calculated and displayed graphically and the obtained results are discussed.

CLUSTER MERGERS AND NON-THERMAL PHENOMENA: A STATISTICAL MAGNETO-TURBULENT MODEL

  • CASSANO R.;BRUNETTI G.
    • Journal of The Korean Astronomical Society
    • /
    • v.37 no.5
    • /
    • pp.583-587
    • /
    • 2004
  • With the aim to investigate the statistical properties and the connection between thermal and non-thermal properties of the ICM in galaxy clusters, we have developed a statistical magneto-turbulent model which describes, at the same time, the evolution of the thermal and non-thermal emission from galaxy clusters. In particular, starting from the cosmological evolution of clusters, we follow cluster. mergers, calculate the spectrum of the magnetosonic waves generated in the ICM during these mergers, the evolution of relativistic electrons and the resulting synchrotron and Inverse Compton spectra. We show that the broad band (radio and hard x-ray) non-thermal spectral properties of galaxy clusters can be well accounted for by our model for viable values of the parameters (here we adopt a EdS cosmology).

Study on Thermophoresis of Highly Absorbing, Emitting Particles in Turbulent Mixed Convection Flows (난류 혼합 대류유동에서 고 흡수, 방사하는 입자의 열 확산에 관한 연구)

  • 여석준
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.12 no.3
    • /
    • pp.231-241
    • /
    • 1996
  • The effect of radiation and buoyancy on the thermophoresis phenomenon owing to the presence of highly absorbing, emitting particles (such as soot or pulverized coal) suspended in a two phase flow system was investigated numerically for a turbulent mixed convection flow. The analysis of conservation equations for a gas-particle flow system was performed on the basis of a two-fluid model from a continuum Eulerian viewpoint. The modified van Driest and Cebeci mixing length turbulence model was adopted in the anaylsis of turbulent flow. In addition, the P-1 approximation was used to evaluate the radiation heat transfer. As expected from the particle concentration and drift velocity distribution, the cumulative collection efficiency E (x) becomes larger when the buoyancy effect increases (i.e. higher Grashof number), while smaller as the radiation effect increases (i.e. higher optical thickness).

  • PDF

LINE EMISSION FROM THE MAGNETOSPHERE OF MAGNETIC CATACLYSMIC VARIABLES (MCV 자기구에서의 선방출)

  • KIM YONGGI
    • Publications of The Korean Astronomical Society
    • /
    • v.15 no.spc1
    • /
    • pp.113-118
    • /
    • 2000
  • A magnetic cataclysmic variable has a rotating magnetic white dwarf which accretes matter from its late type companion. Kim & Beuermann (1995) presented a phenomenological model of the accretion from its surrounding structure e.g., a disk into the magnetosphere of the white dwarf, and presented results for the spin modulated X-ray spectrum and light curves. Using this model, we calculate the optical continuum and line emission which result from reprocessing of X-rays in the accretion stream within the magnetosphere. Penning (1985) suggested the observed spin-modulated radial-velocity variations might result from reprocession of X-rays in the disk. We, however, find the radiation can be originated from the magnetosphere accretion stream. We use the same geometrical model to calculate the optical and the X-ray behaviour. The results from the two wavelength bands are internally consistent. We conclude that this approach will increase the diagnostic accuracies of the results.

  • PDF

Analysis of Turbulent Gas-Particle Suspension Flows in a Venturi (固體粒子 가 浮上된 벤츄리管 流動 의 解析)

  • 성형진;정명균
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.8 no.2
    • /
    • pp.133-140
    • /
    • 1984
  • A "two-fluid" equation model has been applied for predicting gas-solid suspension flows through a Venturi tube. In the "two-fluid"equation model, the bulk motion of the particles is considered as a continuum whose governing equation is obtained by averaging the conservation equations over a volume and expressing the equations in differential forms. Closure of the time-mean equations is achieved by modeling the turbulent correlations with an extended mixing-length theory. Proposed closure model is found to aptly simulate the dependency of the static pressure drop on the particle size, flow rate and the loading ratio.d the loading ratio.

Fatigue Life Prediction of FRP Composites under Uniaxial Tension and Pure Torsion Loadings (인장-비틀림 하중에 의한 섬유강화 복합재료의 피로수명 예측)

  • 박성완;이장규
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 2003.04a
    • /
    • pp.352-361
    • /
    • 2003
  • A fatigue damage accumulation model based on the continuum damage mechanics theory was develope(1 where modules decay ratios in tension and shear on used as indicators for damage variables D . In the model, the damage variables are considered to be second-order tensors. Then the maximum principal damage variable, $D^*$ is introduced According to the similarity to the Principal stress, $D^*$ is obtained as the maximum eigen value of damage tensor [D']. Under proportional tension and torsion loadings, fatigue lives were satisfactorily predicted at any combined stress ratios using the present model in which the fatigue characteristics only under uniaxial tension and pure torsion loadings on needed. Fatigue life prediction under uniaxial tension and pure torsion loadings, was performed based on the damage mechanics using boundary element method.

  • PDF

Fatigue Life Prediction of FRP Composites under Uniaxial Tension and Pure Torsion Loadings (인장-비틀림 하중에 의한 섬유강화 복합재료의 피로수명 예측)

  • Park Sung-Oan
    • Transactions of the Korean Society of Machine Tool Engineers
    • /
    • v.13 no.6
    • /
    • pp.64-73
    • /
    • 2004
  • A fatigue damage accumulation model based on the continuum damage mechanics theory was developed where modulus decay ratios in tension and shear were used as indicators for damage variables D. In the model, the damage variables are considered to be second-order tensors. Then, the maximum principal damage variable, $D^*$ is introduced. According to the similarity to the principal stress, $D^*$ is obtained as the maximum eigen value of damage tensor [D]. Under proportional tension and torsion loadings, fatigue lives were satisfactorily predicted at any combined stress ratios using the present model in which the Fatigue characteristics only under uniaxial tension and pure torsion loadings were needed. Fatigue life prediction under uniaxial tension and pure torsion loadings, was performed based on the damage mechanics using boundary element method.

Development of Two-Dimensional Hydrogen Mixing Model in Containment Subcompartment Under the Severe Accident Conditions

  • Lee, Byung-Chul;Cho, Jae-Seon;Park, Goon-Cherl;Chung, Chang-Hyun
    • Proceedings of the Korean Nuclear Society Conference
    • /
    • 1996.05b
    • /
    • pp.663-668
    • /
    • 1996
  • A two-dimensional continuum model for the prediction of the hydrogen mixing phenomena in the containment compartment under the severe accident conditions is developed. The model could predict well the distribution of time-dependent hydrogen concentration for selected HEDL Experiment. For a simulation of these experiments, the hydrogen is mixed uniform over the test compartment. To predict the extent of non-uniform distribution, the dominant factors such as the geometrical shape of obstacle and velocity of source injection in mixing phenomena are investigated. If the obstacle disturbing the flow of gas mixture exists in the compartment, the uniform distribution of hydrogen may be not guaranteed. The convective circulation of gas flow is separately formed up and down of the obstacle position, which makes a difference of hydrogen concentration between the upper and lower region of the compartment. The recirculation flow must have a considerable mass flow rate relative to velocity of the source injection to sustain the well-mixed conditions of hydrogen.

  • PDF