• Title/Summary/Keyword: Continuum analysis

Search Result 576, Processing Time 0.021 seconds

The Standardization on the Appraisal of Records: Analysis of the Appraisal Principles and Process in ISO 15489-1:2016 (기록 평가의 표준화 - ISO 15489 개정판에서의 평가 원리 및 절차 분석 -)

  • Kim, Myeong-Hun
    • Journal of Korean Society of Archives and Records Management
    • /
    • v.18 no.4
    • /
    • pp.45-68
    • /
    • 2018
  • to apply standardized principles and methodologies to the appraisal of records because it is different for each country, region, and organization to distinguish what kind of records are important and how to select them. For this reason, numerous theories and methodologies have been proposed around the appraisal of records. ISO 15489-1:2016, on the other hand, has laid the groundwork for the standardization of the appraisal of records that are applicable globally in recent record management environments based on a new perspective on the appraisal of records. ISO 15489 presents the principles and methodology of records management that are consistent with the electronic record environment based on the record continuum theory, and the principles and methods on the appraisal of records presented in ISO 15489-1:2016 need to be analyzed in depth. This paper analyzes the concept and the logic of the appraisal of records presented in ISO 15489-1:2016 to find an improvement direction in accordance with the recent electronic record environment. For this purpose, it reviewed courses from the enactment of AS 4390 to the revision of ISO 15489 to understand the background of the appraisal principles of ISO 15489-1:2016. Based on this, the appraisal concepts and principles presented in ISO 15489-1:2016 were examined, and the process of the appraisal was analyzed.

Evaluation of Mechanical Interactions Between Bentonite Buffer and Jointed Rock Using the Quasi-Static Resonant Column Test (유사정적 공진주 시험을 이용한 벤토나이트 완충재와 절리 암반의 역학적 상호작용 특성 평가)

  • Kim, Ji-Won;Kang, Seok-Jun;Kim, Jin-Seop;Cho, Gye-Chun
    • Tunnel and Underground Space
    • /
    • v.31 no.6
    • /
    • pp.561-577
    • /
    • 2021
  • The compacted bentonite buffer in a geological repository for high-level radioactive waste disposal is saturated due to groundwater inflow. Saturation of the bentonite buffer results in bentonite swelling and bentonite penetration into the rock discontinuities present around the disposal hole. The penetrated bentonite is exposed to groundwater flow and can be eroded out of the repository, resulting in bentonite mass loss which can affect the physical integrity of the engineered barrier system. Hence, the evaluation of buffer-rock interactions and coupled behavior due to groundwater inflow and bentonite penetration is necessary to ensure long-term disposal safety. In this study, the effects of the bentonite penetration and swelling on the physical properties of jointed rock mass were evaluated using the quasi-static resonant column test. Jointed rock specimens with bentonite penetration were manufactured using Gyeongju bentonite and hollow cylindrical granite rock discs obtained from the KAERI underground research tunnel. The effects of vertical stress and saturation were assessed using the P-wave and S-wave velocities for intact rock, jointed rock and jointed rock with bentonite penetration specimens. The joint normal and joint shear stiffnesses of each joint condition were inferred from the wave velocity results assuming an equivalent continuum. The joint normal and joint shear stiffnesses obtained from this study can be used as input factors for future numerical analysis on the performance evaluation of geological waste disposal considering rock discontinuities.

10-year trajectories of cognitive functions among older adults: Focus on gender difference and spousal loss (70대 고령자의 10년간의 인지기능수준 변화의 유형화: 성별 및 배우자 상실경험을 중심으로)

  • Min, Joohong;Kim, Joohyun
    • 한국노년학
    • /
    • v.40 no.1
    • /
    • pp.147-161
    • /
    • 2020
  • The purpose of this research is to investigates 10-year trajectories of cognitive functions among older adults in their 70s to understand changes in cognitive functions as a continuum until very late life. This study also examines differences in trajectories of cognitive functions by gender and by changes in marital status, especially widowhood. Among participants of the Korean Longitudinal Study of Ageing(KLoSA), the sample of this study includes 800 older adults in their 70s during the first study wave (2006) and those who reported their cognitive functions for six consecutive study waves (2006, 2008, 2010, 2012, 2014, and 2016). The analyses were conducted in two steps. First, we conducted Latent Class Growth Analyses(LCGA) to investigated heterogeneous trajectories of cognitive functions in 10 years. Then, we performed multinomial logistic regression. Three heterogeneous trajectories of cognitive functions were identified. One group of 48.7% of older adults showed high cognitive function at baseline and maintained it over 10 years. Second group of 14.7% of older adults reported low cognitive function scores at baseline and showed continuous decline over time. Third group of 36.6% were showed mid-level cognitive functions and maintained their functions over time. We also found significant gender differences but not significant differences in marital status when we consider both in our model; however, the we found significant differences in changes in marital status when we did not consider gender in the model. The results suggest that the importance of considering dynamics of gender and changes in marital status to understand changes in cognitive functions in later life.

Adults' perception of mathematics: A narrative analysis of their experiences in and out of school (수학에 대한 성인들의 인식: 학교 안팎에서의 수학적 경험에 대한 내러티브 탐구)

  • Cho, Eun Young;Kim, Rae Young
    • The Mathematical Education
    • /
    • v.61 no.3
    • /
    • pp.477-497
    • /
    • 2022
  • The rapidly changing world calls for reform in mathematics education from lifelong learning perspectives. This study examines adults' perception of mathematics by reflecting on their experiences of mathematics in and out of school in order to understand what the current needs of adults are. With the two questions: "what experiences do participants have during their learning of mathematics in schools?" and "how do they perceive mathematics in their current life?", we analyzed the semi-structured interviews with 10 adults who have different sociocultural backgrounds using narrative inquiry methodology. As a result, participants tended to accept school mathematics as simply a technique for solving computational problems, and when they had not known the usefulness of mathematical knowledge, they experienced frustration with mathematics in the process of learning mathematics. After formal education, participants recognized mathematics as the basic computation skill inherent in everyday life, the furniture of their mind, and the ability to efficiently express, think, and judge various situations and solve problems. Results show that adults internalized school education to clearly understand the role of mathematics in their lives, and they were using mathematics efficiently in their lives. Accordingly, there was a need to see school education and adult education on a continuum, and the need to conceptualize the mathematical abilities required for adults as mathematical literacy.

Prediction of Cognitive Progression in Individuals with Mild Cognitive Impairment Using Radiomics as an Improvement of the ATN System: A Five-Year Follow-Up Study

  • Rao Song;Xiaojia Wu;Huan Liu;Dajing Guo;Lin Tang;Wei Zhang;Junbang Feng;Chuanming Li
    • Korean Journal of Radiology
    • /
    • v.23 no.1
    • /
    • pp.89-100
    • /
    • 2022
  • Objective: To improve the N biomarker in the amyloid/tau/neurodegeneration system by radiomics and study its value for predicting cognitive progression in individuals with mild cognitive impairment (MCI). Materials and Methods: A group of 147 healthy controls (HCs) (72 male; mean age ± standard deviation, 73.7 ± 6.3 years), 197 patients with MCI (114 male; 72.2 ± 7.1 years), and 128 patients with Alzheimer's disease (AD) (74 male; 73.7 ± 8.4 years) were included. Optimal A, T, and N biomarkers for discriminating HC and AD were selected using receiver operating characteristic (ROC) curve analysis. A radiomics model containing comprehensive information of the whole cerebral cortex and deep nuclei was established to create a new N biomarker. Cerebrospinal fluid (CSF) biomarkers were evaluated to determine the optimal A or T biomarkers. All MCI patients were followed up until AD conversion or for at least 60 months. The predictive value of A, T, and the radiomics-based N biomarker for cognitive progression of MCI to AD were analyzed using Kaplan-Meier estimates and the log-rank test. Results: The radiomics-based N biomarker showed an ROC curve area of 0.998 for discriminating between AD and HC. CSF Aβ42 and p-tau proteins were identified as the optimal A and T biomarkers, respectively. For MCI patients on the Alzheimer's continuum, isolated A+ was an indicator of cognitive stability, while abnormalities of T and N, separately or simultaneously, indicated a high risk of progression. For MCI patients with suspected non-Alzheimer's disease pathophysiology, isolated T+ indicated cognitive stability, while the appearance of the radiomics-based N+ indicated a high risk of progression to AD. Conclusion: We proposed a new radiomics-based improved N biomarker that could help identify patients with MCI who are at a higher risk for cognitive progression. In addition, we clarified the value of a single A/T/N biomarker for predicting the cognitive progression of MCI.

APPLICATION OF FUZZY SET THEORY IN SAFEGUARDS

  • Fattah, A.;Nishiwaki, Y.
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 1993.06a
    • /
    • pp.1051-1054
    • /
    • 1993
  • The International Atomic Energy Agency's Statute in Article III.A.5 allows it“to establish and administer safeguards designed to ensure that special fissionable and other materials, services, equipment, facilities and information made available by the Agency or at its request or under its supervision or control are not used in such a way as to further any military purpose; and to apply safeguards, at the request of the parties, to any bilateral or multilateral arrangement, or at the request of a State, to any of that State's activities in the field of atomic energy”. Safeguards are essentially a technical means of verifying the fulfilment of political obligations undertaken by States and given a legal force in international agreements relating to the peaceful uses of nuclear energy. The main political objectives are: to assure the international community that States are complying with their non-proliferation and other peaceful undertakings; and to deter (a) the diversion of afeguarded nuclear materials to the production of nuclear explosives or for military purposes and (b) the misuse of safeguarded facilities with the aim of producing unsafeguarded nuclear material. It is clear that no international safeguards system can physically prevent diversion. The IAEA safeguards system is basically a verification measure designed to provide assurance in those cases in which diversion has not occurred. Verification is accomplished by two basic means: material accountancy and containment and surveillance measures. Nuclear material accountancy is the fundamental IAEA safeguards mechanism, while containment and surveillance serve as important complementary measures. Material accountancy refers to a collection of measurements and other determinations which enable the State and the Agency to maintain a current picture of the location and movement of nuclear material into and out of material balance areas, i. e. areas where all material entering or leaving is measurab e. A containment measure is one that is designed by taking advantage of structural characteristics, such as containers, tanks or pipes, etc. To establish the physical integrity of an area or item by preventing the undetected movement of nuclear material or equipment. Such measures involve the application of tamper-indicating or surveillance devices. Surveillance refers to both human and instrumental observation aimed at indicating the movement of nuclear material. The verification process consists of three over-lapping elements: (a) Provision by the State of information such as - design information describing nuclear installations; - accounting reports listing nuclear material inventories, receipts and shipments; - documents amplifying and clarifying reports, as applicable; - notification of international transfers of nuclear material. (b) Collection by the IAEA of information through inspection activities such as - verification of design information - examination of records and repo ts - measurement of nuclear material - examination of containment and surveillance measures - follow-up activities in case of unusual findings. (c) Evaluation of the information provided by the State and of that collected by inspectors to determine the completeness, accuracy and validity of the information provided by the State and to resolve any anomalies and discrepancies. To design an effective verification system, one must identify possible ways and means by which nuclear material could be diverted from peaceful uses, including means to conceal such diversions. These theoretical ways and means, which have become known as diversion strategies, are used as one of the basic inputs for the development of safeguards procedures, equipment and instrumentation. For analysis of implementation strategy purposes, it is assumed that non-compliance cannot be excluded a priori and that consequently there is a low but non-zero probability that a diversion could be attempted in all safeguards ituations. An important element of diversion strategies is the identification of various possible diversion paths; the amount, type and location of nuclear material involved, the physical route and conversion of the material that may take place, rate of removal and concealment methods, as appropriate. With regard to the physical route and conversion of nuclear material the following main categories may be considered: - unreported removal of nuclear material from an installation or during transit - unreported introduction of nuclear material into an installation - unreported transfer of nuclear material from one material balance area to another - unreported production of nuclear material, e. g. enrichment of uranium or production of plutonium - undeclared uses of the material within the installation. With respect to the amount of nuclear material that might be diverted in a given time (the diversion rate), the continuum between the following two limiting cases is cons dered: - one significant quantity or more in a short time, often known as abrupt diversion; and - one significant quantity or more per year, for example, by accumulation of smaller amounts each time to add up to a significant quantity over a period of one year, often called protracted diversion. Concealment methods may include: - restriction of access of inspectors - falsification of records, reports and other material balance areas - replacement of nuclear material, e. g. use of dummy objects - falsification of measurements or of their evaluation - interference with IAEA installed equipment.As a result of diversion and its concealment or other actions, anomalies will occur. All reasonable diversion routes, scenarios/strategies and concealment methods have to be taken into account in designing safeguards implementation strategies so as to provide sufficient opportunities for the IAEA to observe such anomalies. The safeguards approach for each facility will make a different use of these procedures, equipment and instrumentation according to the various diversion strategies which could be applicable to that facility and according to the detection and inspection goals which are applied. Postulated pathways sets of scenarios comprise those elements of diversion strategies which might be carried out at a facility or across a State's fuel cycle with declared or undeclared activities. All such factors, however, contain a degree of fuzziness that need a human judgment to make the ultimate conclusion that all material is being used for peaceful purposes. Safeguards has been traditionally based on verification of declared material and facilities using material accountancy as a fundamental measure. The strength of material accountancy is based on the fact that it allows to detect any diversion independent of the diversion route taken. Material accountancy detects a diversion after it actually happened and thus is powerless to physically prevent it and can only deter by the risk of early detection any contemplation by State authorities to carry out a diversion. Recently the IAEA has been faced with new challenges. To deal with these, various measures are being reconsidered to strengthen the safeguards system such as enhanced assessment of the completeness of the State's initial declaration of nuclear material and installations under its jurisdiction enhanced monitoring and analysis of open information and analysis of open information that may indicate inconsistencies with the State's safeguards obligations. Precise information vital for such enhanced assessments and analyses is normally not available or, if available, difficult and expensive collection of information would be necessary. Above all, realistic appraisal of truth needs sound human judgment.

  • PDF