• Title/Summary/Keyword: Continuous-flow electrosorption

Search Result 2, Processing Time 0.015 seconds

Advancing towards technology readiness: Continuous-flow electrosorption for thorium separation from rare earth processing by-products

  • Batari Toja Iskandar;Aznan Fazli Ismail;Eli Syafiqah Aziman;Sahrim Ahmad
    • Nuclear Engineering and Technology
    • /
    • v.56 no.11
    • /
    • pp.4611-4619
    • /
    • 2024
  • This study focuses on the development of a curated separation system aimed at separating thorium ions as part of a recovery plan for managing the thorium radionuclide in the rare earth element (REE) processing industry. As a step towards advancing technology readiness, the separation system employs the electrosorption technique, which involves the migration and storage of thorium ions in the electrical double layers on the porous surface of a carbon-based electrode. Using a prototype electrosorption cell operated at an applied voltage of 1.0 V, the system successfully achieved a thorium ion recovery rate of 84.5 ± 0.29 %, with an impressive electrosorption capacity of 105.26 mg-Th/1 g-carbon. Notably, despite the presence of higher concentrations of REE as competing ions, greater selectivity towards thorium was observed which likely attributable to its larger ionic radius, higher electron affinity, and greater distribution coefficient. These findings highlight the efficacy of the curated separation system and its potential to balance between REE economic significance as well as a protection to the environment.

Electrosorption of Uranium Ions in Liquid Waste

  • Lee, Hye-Young;Jung, Chong-Hun;Oh, Won-Zin;Park, Jin-Ho;Shul, Yong-Gun
    • Carbon letters
    • /
    • v.4 no.2
    • /
    • pp.64-68
    • /
    • 2003
  • A study on the electrosorption of uranium ions onto a porous activated carbon fiber (ACF) was performed to treat uraniumcontaining lagoon sludge. The result of the continuous flow-through cell electrosorption experiments showed that the applied negative potential increased the adsorption kinetics and capacity in comparison to the open-circuit potential (OCP) adsorption for uranium ions. Effective U(VI) removal is accomplished when a negative potential is applied to the activated carbon fiber (ACF) electrode. For a feed concentration of 100 mg/L, the concentration of U(VI) in the cell effluent is reduced to less than 1 mg/L. The selective removal of uranium ions from electrolyte was possible by the electrosorption process.

  • PDF