DOI QR코드

DOI QR Code

Advancing towards technology readiness: Continuous-flow electrosorption for thorium separation from rare earth processing by-products

  • Batari Toja Iskandar (Department of Applied Physics, Faculty of Science and Technology, Universiti Kebangsaan Malaysia) ;
  • Aznan Fazli Ismail (Department of Applied Physics, Faculty of Science and Technology, Universiti Kebangsaan Malaysia) ;
  • Eli Syafiqah Aziman (Department of Applied Physics, Faculty of Science and Technology, Universiti Kebangsaan Malaysia) ;
  • Sahrim Ahmad (Department of Applied Physics, Faculty of Science and Technology, Universiti Kebangsaan Malaysia)
  • Received : 2024.02.22
  • Accepted : 2024.06.15
  • Published : 2024.11.25

Abstract

This study focuses on the development of a curated separation system aimed at separating thorium ions as part of a recovery plan for managing the thorium radionuclide in the rare earth element (REE) processing industry. As a step towards advancing technology readiness, the separation system employs the electrosorption technique, which involves the migration and storage of thorium ions in the electrical double layers on the porous surface of a carbon-based electrode. Using a prototype electrosorption cell operated at an applied voltage of 1.0 V, the system successfully achieved a thorium ion recovery rate of 84.5 ± 0.29 %, with an impressive electrosorption capacity of 105.26 mg-Th/1 g-carbon. Notably, despite the presence of higher concentrations of REE as competing ions, greater selectivity towards thorium was observed which likely attributable to its larger ionic radius, higher electron affinity, and greater distribution coefficient. These findings highlight the efficacy of the curated separation system and its potential to balance between REE economic significance as well as a protection to the environment.

Keywords

Acknowledgement

This research is financially supported by DIP-2023-016 and PRGS/1/2023/STG07/UKM/02/1 research grant by Universiti Kebangsaan Malaysia and Malaysia Ministry of Higher Education Respectively. The authors express gratitude to the Nuclear Science Program staff, UKM, for their technical support throughout the research.

References

  1. T.H.T. Ismail, A. Hassan, H. Juahir, S.M. Zain, M.A.A. Samah, Lynas advance material plant (LAMP) project: examining factors influencing risk acceptance by the host community, Procedia Environ Sci 30 (2015) 21-26.  https://doi.org/10.1016/j.proenv.2015.10.004
  2. K. Kaur, Social media creating digital environmental publics: case of Lynas Malaysia, Publ. Relat. Rev. 41 (2015) 311-314.  https://doi.org/10.1016/j.pubrev.2014.12.005
  3. H. Jamaludin, A. Patunru, The impact of objective and subjective valuations on behaviours: a case study of a rare earth processing plant, Extr. Ind. Soc. 12 (2022) 101185. 
  4. H. Jamaludin, A. Patunru, K. Lahiri-Dutt, Role of rumours and locals' perceptions on the level of environmental impacts of Lynas Advanced Material Plant, Kuantan, Malaysia, Resour. Pol. 65 (2020) 101563. 
  5. E.S. Aziman, A.F. Ismail, Frontier looking of rare-earth processed residue as sustainable thorium resources: an Insight into chemical composition and separation of thorium, Prog. Nucl. Energy 128 (2020) 103471. 
  6. A. Amidi, S.A.M. Razif, N.A. Jabit, K.S. Ariffin, Characterization of rare earth elements (REE) from industrial REE waste resources, Mater. Today Proc. 66 (2022) 3140-3143.  https://doi.org/10.1016/j.matpr.2022.07.464
  7. E.S. Aziman, A.F. Ismail, M.A. Rahmat, Balancing economic growth and environmental protection: a sustainable approach to Malaysia's rare-earth industry, Resour. Pol. 83 (2023) 103753. 
  8. International Atomic Energy Agency, Technical Reports Series: Chemical Precipitation Processes for the Treatment of Aqueous Radioactive Waste - No. 337, 1992. Vienna. 
  9. N.E. Borisova, A.M. Safiullina, A.V. Lizunov, A.A. Semenov, M.S. Grigor'ev, M. D. Reshetova, I.A. Litvinov, D.A. Tatarivov, V.F. Mironov, Metal-promoted extraction deprotonation of bidentate organophosphoric reagents: recovery of uranium, thorium, and lanthanides, Russ. J. Inorg. Chem. 64 (2019) 414-422.  https://doi.org/10.1134/S0036023619030057
  10. H. Zhou, Y. Dong, Y. Wang, Z. Zhao, Y. Xiao, X. Sun, Recovery of Th(IV) from leaching solutions of rare earth residues using a synergistic solvent extraction system consisting of Cyanex 572 and n-octyl diphenyl phosphate (ODP), Hydrometallurgy 183 (2019) 186-192.  https://doi.org/10.1016/j.hydromet.2018.12.008
  11. J. Liao, T. Xiong, Z. Zhao, L. Ding, W. Zhu, Y. Zhang, Synthesis of a novel environmental-friendly biocarbon composite and its highly efficient removal of uranium(VI) and thorium(IV) from aqueous solution, J. Clean. Prod. 374 (2022) 134059. 
  12. X. Liu, Y. Liu, Y. Wang, D. Yuan, C. Wang, J. Liu, Efficient electrosorption of uranium(VI) by B, N, and P co-doped porous carbon materials containing phosphate functional groups, J. Solid State Electrochem. 25 (2021) 2443-2454.  https://doi.org/10.1007/s10008-021-05029-2
  13. T.U. Rashid, S.M.F. Kabir, M.C. Biswas, M.A.R. Bhuiyan, Sustainable wastewater treatment via dye-surfactant interaction: a critical review, Ind. Eng. Chem. Res. 59 (2020) 9719-9745.  https://doi.org/10.1021/acs.iecr.0c00676
  14. R. Chen, T. Sheehan, J.L. Ng, M. Brucks, X. Su, Capacitive deionization and electrosorption for heavy metal removal, Environ. Sci. J. Integr. Environ. Res.: Water Research and Technology 6 (2020) 258-282. 
  15. R.P. Narayanan, L.C. Ma, N.K. Kazantzis, M.H. Emmert, Cost analysis as a tool for the development of Sc recovery processes from bauxite residue (red mud), ACS Sustain. Chem. Eng. 6 (2018) 5333-5341.  https://doi.org/10.1021/acssuschemeng.8b00107
  16. L. Kong, X. Liu, Emerging electrochemical processes for materials recovery from wastewater: mechanisms and prospects, Front. Environ. Sci. Eng. 14 (2020). 
  17. H. Setiyanto, F.M. Sari, M.Y. Azis, R.S. Rahayu, A. Sulaeman, M.A. Zulfikar, D. Ratnaningrum, V. Saraswaty, Electrochemical degradation of methylene blue using Ce(IV) ionic mediator in the presence of Ag(I) ion catalyst for environmental remediation, Sains Malays. 51 (2022) 149-159.  https://doi.org/10.17576/jsm-2022-5101-12
  18. D.I. Kim, G. Kwak, P. Dorji, D. He, S. Phuntsho, S. Hong, H. Shon, Palladium recovery through membrane capacitive deionization from metal plating wastewater, ACS Sustain. Chem. Eng. 6 (2018) 1692-1701.  https://doi.org/10.1021/acssuschemeng.7b02923
  19. M. Ziati, F. Khemmari, M. Kecir, S. Hazourli, Removal of chromium from tannery wastewater by electrosorption on carbon prepared from peach stones: effect of applied potential, Carbon Letters 21 (2017) 81-85.  https://doi.org/10.5714/CL.2017.21.081
  20. A. Lissaneddine, M.-N. Pons, F. Aziz, N. Ouazzani, L. Mandi, E. Mousset, Electrosorption of phenolic compounds from olive mill wastewater: mass transport consideration under a transient regime through an alginate-activated carbon fixed-bed electrode, J. Hazard Mater. 430 (2022) 128480. 
  21. T. Su, Y. Song, X. Lan, W. Gao, Adsorption optimized of the coal-based material and application for cyanide wastewater treatment, Green Process. Synth. 8 (2019) 391-398.  https://doi.org/10.1515/gps-2019-0006
  22. E.S. Aziman, A.F. Ismail, Rapid selective removal of thorium via electrosorption towards efficiently managing rare-earth extraction residue, J. Environ. Chem. Eng. 9 (2021) 105478. 
  23. E.S. Aziman, A.F. Ismail, N.A. Muttalib, M.S. Hanifah, Investigation of thorium separation from rare-earth extraction residue via electrosorption with carbon based electrode toward reducing waste volume, Nucl. Eng. Technol. 53 (2021) 2926-2936.  https://doi.org/10.1016/j.net.2021.03.032
  24. A.F. Ismail, M.S. Yim, Investigation of activated carbon adsorbent electrode for electrosorption-based uranium extraction from seawater, Nucl. Eng. Technol. 47 (2015) 579-587.  https://doi.org/10.1016/j.net.2015.02.002
  25. M.M. Hanafi, P. Azizi, S.T. Akinbola, R. Ismail, A.R. Sahibin, I. Wan Mohd Razi, A. F. Ismail, Valorization of rare earth processing byproducts for agriculture usage, Sci. Rep. 11 (2021) 15234. 
  26. M.M. Hanafi, P. Azizi, J. Vijayanathan, Phosphogypsum organic, a byproduct from rare-earth metals processing, improves plant and soil, Agronomy 11 (2021) 2561. 
  27. S. Tulaphol, N. Grisdanurak, F. Anariba, C. Tongcumpou, P. Khamdahsag, Batch and continuous flow treatment studies of trichloroethylene contaminated in water by silver and cerium doped zinc oxide adsorption and photocatalysis, Sains Malays. 52 (2023) 533-545. 
  28. A. Iftikhar, M.T. Hayat, B.S. Zeb, M. Siddique, Z.A. Bhatti, U. Abbasi, Q. Mahmood, Anaerobic biological treatment of wastewater from paper recycling industry by UASB reactor, Sains Malays. 52 (2023) 1087-1099. 
  29. A. Amarray, S. El Ghachtouli, Y. Samih, M. Dahbi, M. Azzi, Enhancement of Cd(II) electrosorption using electrosorption process with manganese oxide nanomaterial electrodeposited, Desalination 521 (2022) 115307. 
  30. Y. Liao, C. Yan, K. Zeng, C. Liao, M. Wang, Asymmetric polysaccharide-bound graphene electrode configuration with enhanced electrosorption performance for uranium (VI) ions, Chem. Eng. J. 424 (2021) 130351. 
  31. X. Su, T.A. Hatton, Electrosorption, in: Kirk-Othomer Encyclopedia of Chemical Technology, John Wiley & Sons, Inc., New Jersey, 2016, pp. 1-11. 
  32. A. Hemmatifar, A. Ramachandran, K. Liu, D.I. Oyarzun, M.Z. Bazant, J.G. Santiago, Thermodynamics of ion separation by electrosorption, Environ. Sci. Technol. 52 (2018) 10196-10204.  https://doi.org/10.1021/acs.est.8b02959
  33. S. Porada, R. Zhao, A. Van Der Wal, V. Presser, P.M. Biesheuvel, Review on the science and technology of water desalination by capacitive deionization, Prog. Mater. Sci. 58 (2013) 1388-1442.  https://doi.org/10.1016/j.pmatsci.2013.03.005
  34. C.H. Jung, H.Y. Lee, J.K. Moon, H.J. Won, Y.G. Shul, Electrosorption of uranium ions on activated carbon fibers, J. Radioanal. Nucl. Chem. 287 (2011) 833-839.  https://doi.org/10.1007/s10967-010-0848-2
  35. E.S. Aziman, A.F. Ismail, Removal of Thorium from industrial waste via electrosorption technique, IOP Conf. Ser. Mater. Sci. Eng. 785 (2020) 012014.  https://doi.org/10.1088/1757-899X/785/1/012014
  36. W.M. Al-Areqi, A.A. Majid, S. Sarmani, Thorium, uranium and rare earth elements content in lanthanide concentrate (LC) and water leach purification (WLP) residue of Lynas advanced materials plant (LAMP), AIP Conf. Proc. (2014) 93-96. 
  37. Y. Gao, L. Xiu, M. Zhang, Q. Zhang, Z. Yang, J. Yang, Z. Xu, Y. Lv, Y. Wang, Ultra-selective ion sieve for thorium recovery from rare earth elements using oxygen-rich microporous carbon adsorption, J. Hazard Mater. 417 (2021) 126115. 
  38. N. Mendel, D. Siretanu, I. Siretanu, D.W.F. Brilman, F. Mugele, Interlayer cation-controlled adsorption of carbon dioxide in anhydrous montmorillonite clay, J. Phys. Chem. C 125 (2021) 27159-27169.  https://doi.org/10.1021/acs.jpcc.1c06746
  39. Howard T. Evans, Marvin J. Weber, CRC Handbook of Chemistry and Physics, 97th ed, 12, Taylor & Francis Group, Boca Raton, 2016.
  40. M. Malhotra, M. Puglia, A. Kalluri, D. Chowdhury, C.V. Kumar, Adsorption of metal ions on graphene sheet for applications in environmental sensing and wastewater treatment, Sensors and Actuators Reports 4 (2022) 100077. 
  41. S. G. Lias, J. E. Bartmess, J. F. Liebman, J. L. Holmes, R. D. Levin, and W. G. Mallard, Ion Energetics Data, NIST Chemistry WebBook, NIST Standard Reference Database Number 69. Accessed: June. 10, 2023. [Online]. 
  42. M. Snow, J. Ward, Fundamental distribution coefficient data and 1 separations using eichrom extraction 2 chromatographic resins 3 4 5, J. Chromatogr. A 1620 (2019) 460833. 
  43. Z.F. Akl, A. Ezat, Investigation of thorium (IV) adsorptive behavior onto functionalized magnetite nanoparticles, J. Radioanal. Nucl. Chem. 328 (2021) 1291-1300.  https://doi.org/10.1007/s10967-021-07729-5
  44. J. Tan, Y. Wang, M. Liu, C. He, Adsorption of thorium from aqueous solution by poly(cyclotriphosphazene-co-4,4'-sulfonyldiphenol), J. Radioanal. Nucl. Chem. 314 (2017) 2243-2252.  https://doi.org/10.1007/s10967-017-5585-3
  45. A. Mehdinia, S. Heydari, A. Jabbari, Synthesis and characterization of reduced graphene oxide-Fe3O4@polydopamine and application for adsorption of lead ions: isotherm and kinetic studies, Mater. Chem. Phys. 239 (2020) 121964. 
  46. J. Wang, X. Guo, Adsorption kinetic models: physical meanings, applications, and solving methods, J. Hazard Mater. 390 (2020) 122156. 
  47. J.P. Simonin, On the comparison of pseudo-first order and pseudo-second order rate laws in the modeling of adsorption kinetics, Chem. Eng. J. 300 (2016) 254-263.  https://doi.org/10.1016/j.cej.2016.04.079
  48. A.S.F.M. Asnawi, S.B. Aziz, S.R. Saeed, Y.M. Yusof, R.T. Abdulwahid, S. Alzangana, W.O. Karim, M.F.Z. Kadir, Solid-state EDLC device based on magnesium ion-conducting biopolymer composite membrane electrolytes: impedance, circuit modeling, dielectric properties and electrochemical characteristics, Membranes 10 (2020) 1-20. 
  49. N.M. Yussuf, A.F. Ismail, E.S. Aziman, N.A. Mohamed, M.A.M. Teridi, Innovative g-C3N4/AX composite electrode for effective thorium elimination from aqueous solutions, Sep. Purif. Technol. 330 (2024) 125205. 
  50. E.O. Opare, E. Struhs, A. Mirkouei, A comparative state-of-technology review and future directions for rare earth element separation, Renew. Sustain. Energy Rev. 143 (2021) 110197. 
  51. E. Vahidi, F. Zhao, Life cycle analysis for solvent extraction of rare earth elements from aqueous solutions. The Minerals, Metals, and Materials Society, 2016, pp. 113-120. 
  52. W. Tang, X. Wang, G. Zeng, J. Liang, X. Li, W. Xing, D. He, L. Tang, Z. Liu, Electro-assisted adsorption of Zn(II) on activated carbon cloth in batch-flow mode: experimental and theoretical investigations, Environ. Sci. Technol. 53 (2019) 2670-2678.  https://doi.org/10.1021/acs.est.8b05909
  53. Y. Wei, L. Wang, H. Li, W. Yan, J. Feng, Synergistic fluoride adsorption by composite adsorbents synthesized from different types of materials-a review, Front. Chem. 10 (2022) 900660. 
  54. N.R. Palapa, N. JuleantiNormah, T. Taher, R. Mohadi, A. Rachmat, A. Lesbani, Adsorptive performance of Congo red using copper-aluminum LDHS load to rice husk biochar, Sains Malays. 51 (2022) 161-173.  https://doi.org/10.17576/jsm-2022-5101-13
  55. N.H. Baharim, F. Sjahrir, R.M. Taib, N. Idris, T.A.T. Daud, Methylene blue adsorption by acid post-Treated low temperature biochar derived from banana (Musa acuminata) pseudo stem, Sains Malays. 52 (2023) 547-561. 
  56. Y. Huang, H. Zheng, H. Li, Z. Zhang, C. Zhao, Q. Gou, Y. Liu, Highly effective and selective adsorption of thorium(IV) from aqueous solution using mesoporous graphite carbon nitride prepared by sol-gel template method, Chem. Eng. J. 410 (2021) 128321. 
  57. N.A. Salem, S.M.E. Yakoot, Adsorption kinetic and mechanism studies of thorium on nitric acid oxidized activated carbon, Desalination Water Treat. 57 (2016) 1-10. 
  58. T. Xiu, Z. Liu, Y. Wang, P. Wu, Y. Du, Z. Cai, Thorium adsorption on graphene oxide nanoribbons/manganese dioxide composite material, J. Radioanal. Nucl. Chem. 319 (2019) 1059-1067.  https://doi.org/10.1007/s10967-019-06417-9
  59. V. Koval, H. Kryshtal, V. Udovychenko, O. Soloviova, O. Froter, V. Kokorina, L. Veretin, Review of mineral resource management in a circular economy infrastructure, Mining of Mineral Deposits 17 (2023) 61-70. 
  60. K. Binnemans, P.T. Jones, Rare earths and the balance problem, Journal of Sustainable Metallurgy 1 (2015) 29-38.  https://doi.org/10.1007/s40831-014-0005-1
  61. A.L. Olechowski, S.D. Eppinger, N. Joglekar, K. Tomaschek, Technology readiness levels: shortcomings and improvement opportunities, Syst. Eng. 23 (2020) 395-408.  https://doi.org/10.1002/sys.21533
  62. G. Salazar, M.N. Russi-Vigoya, Techology readiness level as the foundation of human readiness level, Ergon. Des 29 (2021) 25-29. 
  63. J. Ma, Data-driven TRL transition predictions for early technology development in defence, Defence Sci. J. 71 (2021) 777-783.  https://doi.org/10.14429/dsj.71.16771
  64. S. Bhattacharya, D. Lombardi, S. Amani, M. Aleem, G. Prakhya, S. Adhikari, A. Aliyu, N. Alexander, Y. Wang, L. Cui, S. Jalbi, V. Pakrashi, W. Li, J. Mendoza, N. Vimalan, Physical modelling of offshore wind turbine foundations for TRL (Technology readiness level) studies, J. Mar. Sci. Eng. 9 (2021).