• Title/Summary/Keyword: Continuous torque

Search Result 86, Processing Time 0.023 seconds

Performance Evaluation of a Driving Power Transmission System for 50 kW Narrow Tractors

  • Hong, Soon-Jung;Ha, Jong-Kyou;Kim, Yong-Joo;Kabir, Md. Shaha Nur;Seo, Young Woo;Chung, Sun-Ok
    • Journal of Biosystems Engineering
    • /
    • v.43 no.1
    • /
    • pp.1-13
    • /
    • 2018
  • Purpose: The development of compact tractors that can be used in dry fields, greenhouses, and orchards for pest control, weeding, transportation, and harvesting is necessary. The development and performance evaluation of power transmission units are very important when it comes to tractor development. This study evaluates the performance of a driving power transmission unit of a 50 kW multi-purpose narrow tractor. Methods: The performance of the transmission and forward-reverse clutch, which are the main components of the driving power transmission unit of multi-purpose narrow tractors, was evaluated herein. The transmission performance was evaluated in terms of power transmission efficiency, noise, and axle load, while the forward-reverse clutch performance was evaluated in terms of durability. The transmission's power transmission efficiency accounts for the measurement of transmission losses, which occur in the transmission's gear, bearing, and oil seal. The motor's power was input in the transmission's input shaft. The rotational speed and torque were measured in the final output shaft. The noise was measured at each speed level after installing a microphone on the left, right, and upper sides. The axle load test was performed through a continuous equilibrium load test, in which a constant load was continuously applied. The forward-reverse clutch performance was calculated using the engine torque to axle torque ratio with the assembled engine and transmission. Results: The loss of power in the transmission efficiency test of the driving power unit was 6.0-9.7 kW based on all gear steps. This loss of horsepower was equal to 11-18% of the input power (52 kW). The transmission efficiency of the driving power unit was 81.5-89.0%. The noise of the driving power unit was 50-57 dB at 800 rpm, 70-77 dB at 1600 rpm, and 76-83 dB at 2400 rpm. The axle load test verified that the input torque and axle revolutions were constant. The results of the forward-reverse clutch performance test revealed that hydraulic pressure and torque changes were stably maintained when moving forward or backward, and its operation met the hydraulic design standards. Conclusions: When comprehensively examined, these research results were similar to the main driving power transmission systems from USA and Japan in terms of performance. Based on these results, tractor prototypes are expected to be created and supplied to farmhouses after going through sufficient in-situ adaptability tests.

Influence of surface treatment on the insertion pattern of self-drilling orthodontic mini-implants (표면처리가 교정용 미니 임플랜트의 식립수직력과 토크에 미치는 영향)

  • Kim, Sang-Cheol;Kim, Ho-Young;Lee, Sang-Jae;Kim, Cheol-Moon
    • The korean journal of orthodontics
    • /
    • v.41 no.4
    • /
    • pp.268-279
    • /
    • 2011
  • Objective: The purpose of this study was to compare self-drilling orthodontic mini-implants of different surfaces, namely, machined (untreated), etched (acid-etched), RBM (treated with resorbable blasting media) and hybrid (RBM + machined), with respect to the following criteria: physical appearance of the surface, measurement of surface roughness, and insertion pattern. Methods: Self-drilling orthodontic mini-implants (Osstem implant, Seoul, Korea) with the abovementioned surfaces were obtained. Surface roughness was measured by using a scanning electron microscope and surface-roughness-testing machine, and torque patterns and vertical loadings were measured during continuous insertion of mini-implants into artificial bone (polyurethane foam) by using a torque tester of the driving-motor type (speed, 12 rpm). Results: The mini-implants with the RBM, hybrid, and acid-etched surfaces had slightly increased maximum insertion torque at the final stage ($p$ < 0.05). Implants with the RBM surface had the highest vertical load for insertion ($p$ < 0.05). Testing for surface roughness revealed that the implants with the RBM and hybrid surfaces had higher Ra values than the others ($p$ < 0.05). Scanning electron microscopy showed that the implants with the RBM surface had the roughest surface. Conclusions: Surface-treated, self-drilling orthodontic mini-implants may be clinically acceptable, if controlled appropriately.

A Development and Basic Characteristics of MCVVT Research Hydrogen Engine for Practical Use of External Mixture Hydrogen-Fueled Engine (흡기관 분사식 수소기관의 실용화를 위한 MCVVT 연구용 수소기관의 개발과 기본 특성)

  • Kang, J.K.;Cong, Huynh Thanh;Noh, K.C.;Lee, J.T.;Lee, J.H.
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.17 no.3
    • /
    • pp.255-262
    • /
    • 2006
  • To develop a hydrogen fueled engine with external mixture which uses in high reliability, low cost and low pressure, the single cylinder research engine with MCVVT(Mechanical Continuous Variable Valve Timing) system is developed and its basic characteristics analyzed. The MCVVT developed has high reliability and the valve timing change is possible in wide range continuously. Though the mechanical loss due to MCVVT system is increased a little, back-fire suppression research for valve overlap period is no difficulty. It's also confirmed that the hydrogen-fueled engine has lower torque and is possible high lean burn. As fuel-air equivalence ratio is high, as thermal efficiency is remarkable increasing.

NONLINEAR MODEL-BASED CONTROL OF VANE TYPE CONTINUOUS VARIABLE VALVE TIMING SYSTEM

  • Son, M.;Lee, M.;Lee, K.;SunWoo, M.;Lee, S.;Lee, C.;Kim, W.
    • International Journal of Automotive Technology
    • /
    • v.8 no.5
    • /
    • pp.555-562
    • /
    • 2007
  • The Variable Valve Timing(VVT) system for high performance is a key technology used in newly developed engines. The system realizes higher torque, better fuel economy, and lower emissions by allowing an additional degree of freedom in valve timing during engine operation. In this study, a model-based control method is proposed to enable a fast and precise VVT control system that is robust with respect to manufacturing tolerances and aging. The VVT system is modeled by a third-order nonlinear state equation intended to account for nonlinearities of the system. Based on the model, a controller is designed for position control of the VVT system. The sliding mode theory is applied to controller design to overcome model uncertainties and unknown disturbances. The experimental results suggest that the proposed sliding mode controller is capable of improving tracking performance. In addition, the sliding mode controller is robust to battery voltage disturbance.

Design of In-Wheel Motor for Automobiles Using Parameter Map (파라미터 맵을 이용한 차량용 인휠 전동기의 설계)

  • Kim, Hae-Joong;Lee, Choong-Sung;Hong, Jung-Pyo
    • Journal of the Korean Magnetics Society
    • /
    • v.25 no.3
    • /
    • pp.92-100
    • /
    • 2015
  • Electric Vehicle (EV) can be categorized by the driving method into in-wheel and in-line types. In-wheel type EV does not have transmission shaft, differential gear and other parts that are used in conventional cars, which simplifies and lightens the structure resulting in higher efficiency. In this paper, design method for in-wheel motor for automobiles using Parameter Map is proposed, and motor with continuous power of 5 kW is designed, built and its performance is verified. To decide the capacity of the in-wheel motor that meets the automobile's requirement, Vehicle Dynamic Simulation considering the total mass of vehicle, gear efficiency, effective radius of tire, slope ratio and others is performed. Through this step, the motor's capacity is decided and initial design to determine the motor shape and size is performed. Next, the motor parameters that meet the requirement is determined using parametric design that uses parametric map. After the motor parameters are decided using parametric map, optimal design to improve THD of back EMF, cogging torque, torque ripple and other factors is performed. The final design was built, and performance analysis and verification of the proposed method is conducted by performing load test.

Time optimal trajectory planning for a robot system Under torque and impulse constraints.

  • Cho, Bang-Hyun;Lee, Jang-Myung
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2004.08a
    • /
    • pp.1402-1407
    • /
    • 2004
  • Moving a fragile object from an initial point to a goal location in minimum time without damage is pursued in this paper. In order to achieve the goal, first of all, the range of maximum acceleration and velocity are specified, which the manipulator can generate dynamically on the path that is planned a priori considering the geometrical constraints. Later, considering the impulsive force constraint of the object, the range of maximum acceleration and velocity are going to be obtained to keep the object safe while the manipulator is carrying it along the curved path. Finally, a time-optimal trajectory is planned within the maximum allowable range of the acceleration and velocity. This time optimal trajectory planning can be applied for real applications and is suitable for not only a continuous path but also a discrete path.

  • PDF

Response characteristics of a CVT vehicle (무단변속기(CVT) 차량의 응답특성)

  • Kim, K. W.;Kwan, H. B.;Kim, H. S.;Eun, T.;Park, C. I
    • Journal of the korean Society of Automotive Engineers
    • /
    • v.14 no.2
    • /
    • pp.99-109
    • /
    • 1992
  • The response characteristics of a CVT vehicle is investigated numerically by using a Bondgraph model. Simulation result show the continuous behavior of the engine and the speed ratio for the CVT vehicle compared to the discrete behavior of the automatic transmission. Also, the optimal operation of the CVT which is derived from the speed ratio-torque-axial force equation from the previous works. It is found that the speed ratio of CVT has to be controlled corresponding to the optimal CVT ratio that makes the engine run on the optimal operating line.

  • PDF

Modeling of Hybride Electric Vehicle Drivetrain and Development of Simulation Program (하이브리드 전기차량 동력부의 모델링 및 성능평가 프로그램 제작)

  • 김도형;박영진
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.8 no.6
    • /
    • pp.122-129
    • /
    • 2000
  • This paper describes a hybrid dynamic system(HDS) modeling method and result for the drivertrain of a parallel hybrid electric vehicle(PHEV) which consists of a gasoline engine, an electric machine, and a continuous variable transmission (CVT) and proposes a drivetrain control system. The control system has an engine controller, a motor controller, a CVT controller and a supervisory controller for the coordination of all system. The controller keep the speed of engine wheel and the output torque within the optimal operation range based on the experimental data. We also developed a MATLAB/SIMULINK program for the performance simulation of PHEV drivetrain model and controllers and compared the simulation result with the experiment result in the recent literatures.

  • PDF

A Study on Off-Line Programming Using Three-Dimensional Gaphics (3차원 그래픽을 이용한 오프-라인 프로그램의 개발)

  • Park, M. J.;Son, K.;Ann, D. S.;Lee, M. H.
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1993.10a
    • /
    • pp.445-449
    • /
    • 1993
  • The role of a robot becomes more important as factory automation is widely spread in the manufacturing industry. An off-line program system has been required for uninterruption of production lines because it can save cost and time spent in adjusting a robot to a new workcell. The objective of this paper is to develop our own OLP system for a SCARA type FARA robot with four axes. Three-dimensional graphic results are presented for the case when the robot is simulated using the computed torque method with a PD controller and the continuous path trajectory planning.

  • PDF

Time-optimal Trajectory Planning for a Robot System under Torque and Impulse Constraints

  • Cho, Bang-Hyun;Choi, Byoung-Suk;Lee, Jang-Myung
    • International Journal of Control, Automation, and Systems
    • /
    • v.4 no.1
    • /
    • pp.10-16
    • /
    • 2006
  • In this paper, moving a fragile object from an initial point to a specific location in the minimum time without damage is studied. In order to achieve this goal, initially, the maximum acceleration and velocity ranges are specified. These ranges can be dynamically generate on the planned path by the manipulator. The path can be altered by considering the geometrical constraints. Later, considering the impulsive force constraint on the object, the range of maximum acceleration and velocity are obtained to preserve object safety while the manipulator is carrying it along the curved path. Finally, a time-optimal trajectory is planned within the maximum allowable range of acceleration and velocity. This time-optimal trajectory planning can be applied to real applications and is suitable for both continuous and discrete paths.