• Title/Summary/Keyword: Continuous thermodynamics

Search Result 11, Processing Time 0.024 seconds

Phase Equilibria in Multicomponent Mixtures using Continuous Thermodynamics (연속열역학을 이용한 다성분 혼합물의 상평형)

  • Yong, Pyeong-Soon;Kim, Ki-Chang;Kwon, Yong Jung
    • Journal of Industrial Technology
    • /
    • v.18
    • /
    • pp.267-275
    • /
    • 1998
  • Continuous thermodynamics has been applied for modeling of phase equilibria in multicomponent mixtures, to avoid disadvantages of the pseudo-component and key-component method. In this paper continuous thermodynamic relations formulated by using the Pate-Teja equation of state were adopted for calculations of phase equilibria in natural gas mixtures, crude oil mixtures and mixtures extracted by supercritical $CO_2$ fluids. Calculations of phase equilibria were performed by two procedures ; a moment method coupled with the beta distribution function and a quadrature method combined with Gaussian-Legendre polynomials. Calculated results were compared with experimental data. It was showed that continuous thermodynamic frameworks considered in this paper were well-matched to experimental data.

  • PDF

Phase Separations in Random Copolymer Solutions by Continuous Thermodynamics (연속열역학을 이용한 랜덤공중합체 용액의 상분리)

  • Sheo, Shin-Ho;Kim, Ki-Chang;Lee, Kwang-Rae
    • Journal of Industrial Technology
    • /
    • v.18
    • /
    • pp.277-287
    • /
    • 1998
  • In this work continuous thermodynamics was adopted for describing the influence of copolymer polydispersity on phase separations in random copolymer solutions. Continuous themodynamic frameworks were formulated using the Flory-Huggin's excess Gibbs free energy model in which the concentration- and temperature-depentent terms of interaction parameter x were modified. Cloud-point curves and coexistence curves of poly(ethylene-vinylactate)/methylacetate solutions and poly(ehtylene-vinylacetate)/ethylacetate solutions were measured, and experimental data were fitted with theoretical relations formulated in this work. Calculated could-point curves were more good ageeable with experimental data than the modified Flory-Huggins's relations. Coexistence curves which were evaluated by using parameters of x estimated from experimental cloud-point curves, were found to coincide with experimental data.

  • PDF

Development of Algorithm to Predict the Superheat-limit Explosion(SLE) Conditions of LNG Using Continuous Thermodynamics (연속열역학을 이용한 액화천연개스(LNG)의 과가열약체 폭발현상 예측에 대한 연구)

  • Shin, Goun-Soup;Kwon, Yong-Jung
    • Journal of Industrial Technology
    • /
    • v.15
    • /
    • pp.5-13
    • /
    • 1995
  • Natural gas, which is getting more important as a fuel, should be liquefied and shipped in a special tank. During transportation, a spill of liquefied natural gas(LNG) could occur by a collision or even an accident. As a result, violent explosion called the superheat-limit explosion(SLE) can take place in some cases, unexpectedly. Such explosion may result from the formation of a superheated liquid which has attained the superheat-limit temperature when hot(water) and cold(LNG) liquids come into contact. Natural gas mixtures can be considered as discrete light components plus continuous heavy fractions where several continuous distribution function can be adopted. This work is aiming at prediction of the superheat-limit explosion condition by suing continuous thermodynamics development of algorithm to predict.

  • PDF

Inversion of Geophysical Data via Simulated Annealing (아닐링법에 의한 지구물리자료의 역산)

  • Kim, Hee Joon
    • Economic and Environmental Geology
    • /
    • v.28 no.3
    • /
    • pp.305-309
    • /
    • 1995
  • There is a deep and useful connection between thermodynamics (the behavior of systems with many degrees of freedom in thermal equilibrium at a finite temperature) and combinational or continuous optimization (finding the minimum of a given multiparameter function). At the heart of the method of simulated annealing is an analogy with the way that liquids freeze and crystallize, or metals cool and anneal. This paper provides a detailed description of simulated annealing. Although computationaly intensive, when it is carefully implemented, simulated annealing is found to give superior results to more traditional methods of nonlinear optimization.

  • PDF

Nozzle Clogging Mechanism in Continuous Casting for Titanium-Containing Steel (티타늄 첨가강의 연주 노즐막힘 기구)

  • Jung, Woo-Gwang;Kwon, Oh-Duck;Cho, Mun-Kyu
    • Korean Journal of Materials Research
    • /
    • v.19 no.9
    • /
    • pp.473-480
    • /
    • 2009
  • In order to provide the mechanism of nozzle clogging, recovered nozzles for high strength steel grade were examined carefully after continuous casting. The thickness of clogged material in SEN is increased in the following order: from the bottom to the top of the nozzle, upper part of slag line, and the pouring hole. Nozzle clogging material begins to form due the adhesion of metal to nozzle wall, the decarburization, and reduction of oxide in the refractory by Al and Ti in the melt. The reduction of oxide in the refractory by Al and Ti improves the wettability of the melt on the refractory and forms a thin Al-Ti-O layer. Metal containing micro alumina inclusions is solidified on the Al-Ti-O layer, and the solid layer grows due to the heat evolution through the nozzle wall. Thermodynamic calculation has been made for the related reactions. The effect of superheat to the nozzle clogging is discussed on ultra low carbon steel and low carbon steel.

Integrated fire dynamics and thermomechanical modeling framework for steel-concrete composite structures

  • Choi, Joonho;Kim, Heesun;Haj-ali, Rami
    • Steel and Composite Structures
    • /
    • v.10 no.2
    • /
    • pp.129-149
    • /
    • 2010
  • The objective of this study is to formulate a general 3D material-structural analysis framework for the thermomechanical behavior of steel-concrete structures in a fire environment. The proposed analysis framework consists of three sequential modeling parts: fire dynamics simulation, heat transfer analysis, and a thermomechanical stress analysis of the structure. The first modeling part consists of applying the NIST (National Institute of Standards and Technology) Fire Dynamics Simulator (FDS) where coupled CFD (Computational Fluid Dynamics) with thermodynamics are combined to realistically model the fire progression within the steel-concrete structure. The goal is to generate the spatial-temporal (ST) solution variables (temperature, heat flux) on the surfaces of the structure. The FDS-ST solutions are generated in a discrete form. Continuous FDS-ST approximations are then developed to represent the temperature or heat-flux at any given time or point within the structure. An extensive numerical study is carried out to examine the best ST approximation functions that strike a balance between accuracy and simplicity. The second modeling part consists of a finite-element (FE) transient heat analysis of the structure using the continuous FDS-ST surface variables as prescribed thermal boundary conditions. The third modeling part is a thermomechanical FE structural analysis using both nonlinear material and geometry. The temperature history from the second modeling part is used at all nodal points. The ABAQUS (2003) FE code is used with external user subroutines for the second and third simulation parts in order to describe the specific heat temperature nonlinear dependency that drastically affects the transient thermal solution especially for concrete materials. User subroutines are also developed to apply the continuous FDS-ST surface nodal boundary conditions in the transient heat FE analysis. The proposed modeling framework is applied to predict the temperature and deflection of the well-documented third Cardington fire test.

PHASE FIELD MODELING OF CRYSTAL GROWTH

  • Sekerka, Robert F.
    • Proceedings of the Korea Association of Crystal Growth Conference
    • /
    • 1996.06a
    • /
    • pp.139-156
    • /
    • 1996
  • The phase field model is becoming the model of choice for the theoretical study of the morphologies of crystals growth from the melt. This model provides an alternative approach to the solution of the classical (sharp interface) model of solidification by introducing a new variable, the phase field, Ø, to identify the phase. The variable Ø takes on constant values in the bulk phases and makes a continuous transition between these values over a thin transition layer that plays the role of the classically sharp interface. This results in Ø being governed by a new partial differential equation(in addition to the PDE's that govern the classical fields, such as temperature and composition) that guarantees (in the asymptotic limit of a suitably thin transition layer) that the appropriate boundary conditions at the crystal-melt interface are satisfied. Thus, one can proceed to solve coupled PDE's without the necessity of explicitly tracking the interface (free boundary) that would be necessary to solve the classical (sharp interface) model. Recent advances in supercomputing and algorithms now enable generation of interesting and valuable results that display most of the fundamental solidification phenomena and processes that are observed experimentally. These include morphological instability, solute trapping, cellular growth, dendritic growth (with anisotropic sidebranching, tip splitting, and coupling to periodic forcing), coarsening, recalescence, eutectic growth, faceting, and texture development. This talk will focus on the fundamental basis of the phase field model in terms of irreversible thermodynamics as well as it computational limitations and prognosis for future improvement. This work is supported by the National Science Foundation under grant DMR 9211276

  • PDF

Characterization of the Purified Ca-type Bentonil-WRK Montmorillonite and Its Sorption Thermodynamics With Cs(I) and Sr(II)

  • Seonggyu Choi;Bong-Ju Kim;Surin Seo;Jae-Kwang Lee;Jang-Soon Kwon
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.21 no.4
    • /
    • pp.427-438
    • /
    • 2023
  • Thermodynamic sorption modeling can enhance confidence in assessing and demonstrating the radionuclide sorption phenomena onto various mineral adsorbents. In this work, Ca-montmorillonite was successfully purified from Bentonil-WRK bentonite by performing the sequential physical and chemical treatments, and its geochemical properties were characterized using X-ray diffraction, Brunauer-Emmett-Teller analysis, cesium-saturation method, and controlled continuous acid-base titration. Further, batch experiments were conducted to evaluate the adsorption properties of Cs(I) and Sr(II) onto the homoionic Ca-montmorillonite under ambient conditions, and the diffuse double layer model-based inverse analysis of sorption data was performed to establish the relevant surface reaction models and obtain corresponding thermodynamic constants. Two types of surface reactions were identified as responsible for the sorption of Cs(I) and Sr(II) onto Ca-montmorillonite: cation exchange at interlayer site and complexation with edge silanol functionality. The thermodynamic sorption modeling provides acceptable representations of the experimental data, and the species distributions calculated using the resulting reaction constants accounts for the predominance of cation exchange mechanism of Cs(I) and Sr(II) under the ambient aqueous conditions. The surface complexation of cationic fission products with silanol group slightly facilitates their sorption at pH > 8.

A Study on Fouling Phenomena of in Petroleum Chemical Process (석유화학공정내에서 원유의 파울링 현상에 관한 연구)

  • Lee, Dong Rak;Ryu, Sang Ryoun;Park, Sang Jin;Cho, Wook Sang;Kim, Sang Wook
    • Applied Chemistry for Engineering
    • /
    • v.7 no.3
    • /
    • pp.443-452
    • /
    • 1996
  • Fouling is caused by sedimentation and corrosion of polymer, heavy paraffine, chemicals, heavy organics, asphaltene, etc. in the entire chemical process of heat exchanger, boiler, desalter, etc. Fouling phenomena remains a serious operating problem which results in increased energy consumption, increased pressure drops, reduction or complete loss of products yield, and increased maintenance costs. In order to calculate the separated amounts of foulants and to control the fouling process, the predictive model is developed which is based on Scott & Magat polymer solution theory, Peng-Robinson EOS, BWR EOS, and continuous and multicomponent thermodynamics.

  • PDF

Prediction of Phase Behavior of ε-caprolactam Derivatives and Carbon Dioxide using a Group Contribution Method (그룹 기여 방법을 이용한 ε-caprolactam 유도체와 이산화탄소의 상거동 예측에 관한 연구)

  • Kwon, Soyoung;Bae, Won;Lee, Kyoungwon;Kim, Hwayong
    • Clean Technology
    • /
    • v.11 no.3
    • /
    • pp.117-122
    • /
    • 2005
  • N-vinyl caprolactam (NVCL), a kind of N-vinyl amide monomer, must be dissolved in continuous phase ($scCO_2$) for dispersion polymerization in supercritical carbon dioxide. Phase behavior of $CO_2$+NVCL is very important and necessary for determining initial polymerization condition and for monomer extraction from final polymer. There is the limitation of experimental method for obtaining pure properties of the monomer because of the possibility of polymerization. And N-methyl caprolactam (NMCL) is the useful solvent for the gas treating process. In the viewpoint of molecular thermodynamics, NVCL and NMCL have same functional group i.e. ${\varepsilon}$-caprolactam. In the case of NVCL, hydrogen of amide group is substituted with vinyl group and for NMCL, hydrogen of amide group is substituted with methyl group. We suggested modified group contribution method for this ${\varepsilon}$-caprolactam derivatives. This new group contribution parameter was applied to correlate $CO_2$ + N-vinyl caprolactam or N-methyl caprolactam system.

  • PDF