In spoken document retrievals (SDR), subword (typically phonemes) indexing term is used to avoid the out-of-vocabulary (OOV) problem. It makes the indexing and retrieval process independent from any vocabulary. It also requires a small corpus to train the acoustic model. However, subword indexing term approach has a major drawback. It shows higher word error rates than the large vocabulary continuous speech recognition (LVCSR) system. In this paper, we propose an probabilistic slot detection and n-gram based string matching method for phone based spoken document retrievals to overcome high error rates of phone recognizer. Experimental results have shown 9.25% relative improvement in the mean average precision (mAP) with 1.7 times speed up in comparison with the baseline system.
본 논문은 분노, 행복, 평정, 슬픔, 놀람 등과 같은 인간의 감정상태를 인식하는 새로운 접근에 대해 설명한다. 이러한 시도는 이산길이를 포함하는 연속 은닉 마르코프 모델(HMM)을 사용함으로써 이루어진다. 이를 위해, 우선 입력음성신호로부터 감정의 특징 파라메타를 정의한다. 본 연구에서는 피치 신호, 에너지, 그리고 각각의 미분계수 등의 운율 파라메타를 사용하고, HMM으로 훈련과정을 거친다. 또한, 화자적응을 위해서 최대 사후확률(MAP) 추정에 기초한 감정 모델이 이용된다. 실험 결과로서, 음성에서의 감정 인식률은 적응 샘플수의 증가에 따라 점차적으로 증가함을 보여준다.
Korean unvoiced phonemes consist of nonstationary parts comparing that the vowels and nasal consonants consist of quasi-stationary part. And some phonemes, which have smae point of articulation but differnt manner of articulation, has similar characteristics, so it makes to be hard to distinguish each other. A new method usin gchanges and characteristics of acoustic properties of these phonemes to improve recognition rate are proposed. And because these changes and cahracteristics evidently occur in continuous speech except some unvoiced consonants are articulated as voiced phoneme in case to be used as an midial between voiced phonemes, this method can be applied easily. The features of the frames extracted to represent each phonemes are used asinputs to the hierarchical neural network. And with these results final decision for phoneme recognition is made thorugh post processing which the new method is applied to. Through the experimental recognition results for 9 unvoiced consonants which belong to bilabial, alveolar, and velar phoneme series, 89.4% recognition rate to distinguish in same phoneme series is obtained, and 85.6% recognition rate is obtained in case of including cistinguishing phoneme series.
자동 음성 인식(Automatic Speech Recognition)기술은 세계적인 의사소통과 협력을 원활히 할 수 있는 가능성을 제시한다. 현재까지 대부분의 연구들은 주로 사용되는 단일 언어의 말하기에만 집중되어 있다. 따라서 다른 언어들과 함께 사용되는 특정 ASR 시스템을 도입하는 데에는 비싼 비용이 뒤따른다. 본 논문은 다국어 음성 인식에 대한 일반적 접근으로 각 나라 언어를 대표한 발음사전(어휘모델)을 만들기 위하여 음성 인식에 이용하는 어휘 모델을 만들기 위하여 음소 언어 인식(PLI, Phonetic Language Identity) 형식의 입력된 파일을 해석하는 국제 음소 엔진(IPE, International Phoneticizing Engine)를 제안한다. IPE는 독립적이며 규칙을 기본으로 한다. 어휘모델 생성 과정은 Java 언어로 구현된 프로그램에 의해 이루어지고, 이 과정들은 규칙 상충을 줄여주며, 언어학적 훈련을 받지 않은 사람의 규칙 생성도 가능하게 한다. IPE에 의해 생성된 어휘모델을 연속 음성 인식기에 적용한 결과 우리말 인식률이 92.55%, 영어에 대하여 89.93%를 얻었다.
본 논문은 한국어 음성인식에서 음향모델의 성능개선을 위한 기초적 연구로서 결정트리 상태 클러스터링에 의한 HM-Net (Hidden Markov Network)의 구조결정 알고리즘을 이용한 음성인식에 관한 연구를 수행하였다. 한국어는 다른 언어와 비교하여 많은 문법과 변이음이 존재하는데, 국어 음성학에서 정의한 다양한 변이음을 조사하고, 음소결정트리를 위한 음소 질의어 집합을 작성하였다. 본 논문의 HM-Net 구조결정 알고리즘의 아이디어는 SSS (Successive State Splitting) 알고리즘의 구조를 가지면서 미리 작성해 둔 문맥의존 음향모델의 상태를 다시 분할하는 방법이다. 즉, 모델의 각 상태위치마다 음소 질의어 집합에 의해 음소결정트리를 생성하고, PDT-SSS (Phonetic Decision Tree-based SSS) 알고리즘에 의해 문맥의존 음향모델의 상태열을 다시 학습하는 방법이다. 결정트리 상태 클러스터링에 의한 HM-Net 구조결정 알고리즘의 유효성을 확인하기 위해, 국어공학센터 (KLE)의 452단어와 항공편 예약에 관련된 YNU200 문장을 대상으로 음성인식 실험을 수행하였다. 인식실험 결과, 음소, 단어, 연속음성인식 실험에서 상태분할을 수행한 후 상태수의 변화에 따라 인식률이 점진적으로 향상됨을 확인하였다. 상태수 2,000일 때 음소, 단어 인식률이 평균 71.5%, 99.2%를 각각 얻었으며, 연속음성인식률은 상태수 800일 때 평균 91.6%를 얻었다. 또한 HM-Net 구조결정 알고리즘의 파라미터 공유관계를 비교하기 위해 상태공유를 수행하는 HTK를 이용한 단어인식 실험을 수행하였다. 실험결과, HTK를 이용한 문맥의존 음향모델에 비해 평균 4.0%의 인식률 향상을 보여, 본 논문에서 적용한 결정트리 상태 클러스터링에 의한 HM-Net 구조결정 알고리즘의 유효성을 확인하였다.
일반적으로 통계적 언어모델의 확률을 추정하는 방법은 대량의 텍스트 데이터로부터 출현빈도가 높은 단어를 선택하여 사용하고 있다. 하지만 특정 태스크에서 적용할 언어모델의 경우 시간적, 비용적 측면을 고려할 때 대용량의 텍스트의 사용은 비효율적일 것이다. 본 논문에서는 특정 태스크에서 사용하기 위해 소량의 텍스트 데이터로부터 효율적인 언어모델을 작성하는 방법을 제안한다. 즉, 언어모델을 작성할 때 출현빈도가 낮은 단어의 빈도를 개선하기 위해 같은 문장을 반복하여 학습에 참가시키므로 단어의 발생확률을 좀 더 강건하게 하였으며 제안된 언어모델을 이용하여 3명이 발성한 항공편 예약관련 200문장에 대하여 연속음성인식 실험을 수행하였다. 인식실험 결과, 반복학습에 의해 작성한 언어모델을 이용한 경우가 반복학습 적용 전에 비하여 평균 20.4%의 인식률 향상을 보였다. 또한 기존의 문맥자유문법을 이용한 시스템과 비교하여 인식률이 평균 13.4% 향상되어 제안한 방법이 시스템에 유효함을 확인하였다.
본 논문은 음소인식을 위한 신경회로망에 관한 연구로서, 시간 지연 신경회로망을 이용하여 음소인식을 수행하였다. 또한, 본 논문은 대규모 시간지연 신경망에도 적합한 음성 인식 신경망의 학습 방법에 제안한다. 연속 음성의 인식을 위해 반드시 선행되어야 하는 음소의 정확한 인식을 위하여 우수한 성능을 보이고 있는 시간지연 신경망을 사용하였으며, 인식 대상 음소수가 증가하여도 신경망을 최적으로 수렴시킬 수 있는 시간지연 신경망의 새로운 알고리즘을 제시하였다. 확률론적 접근법인 코우쉬 알고리즘을 에러 역전파 알고리즘에 결합하는 시간지연 신경망의 새로운 학습 알고리즘을 사용한 실험이 수행되었다. 화자 2인을 대상으로 한 3분류의 음소군 인식 실험에서 $98.1\%$의 인식률을 얻었으며, 제안된 알고리즘이 시간지연 신경망의 더욱 우수한 인식률과 수렴 시간의 단축에 효율적이었음을 보였다.
Hidden Markov Model(HMM) has been widely used in speech recognition, however, its use in machine condition monitoring has been very limited despite its good potential. In this paper, HMM is used to recognize rotor fault pattern. First, we set up rotor kit under unbalance and oil whirl conditions. Time signals of two failure conditions were sampled and translated to auto power spectrums. Using filter bank, feature vectors were calculated from these auto power spectrums. Next, continuous HMM and discrete HMM were trained with scaled forward/backward variables and diagonal covariance matrix. Finally, each HMM was applied to all sampled data to prove fault recognition ability. It was found that HMM has good recognition ability despite of small number of training data set in rotor fault pattern recognition.
In this paper, we present a one-pass semi-dynamic network decoding framework that inherits both advantages of fast decoding speed from static network decoders and memory efficiency from dynamic network decoders. Our method is based on the novel language model network representation that is essentially of finite state machine (FSM). The static network derived from the language model network [1][2] is partitioned into smaller subnetworks which are static by nature or self-structured. The whole network is dynamically managed so that those subnetworks required for decoding are cached in memory. The network is near-minimized by applying the tail-sharing algorithm. Our decoder is evaluated on the 25k-word Korean broadcast news transcription task. In case of the search network itself, the network is reduced by 73.4% from the tail-sharing algorithm. Compared with the equivalent static network decoder, the semi-dynamic network decoder has increased at most 6% in decoding time while it can be flexibly adapted to the various memory configurations, giving the minimal usage of 37.6% of the complete network size.
In this paper, in order to protect music copyrights, we propose a music identification system which is scalable to the number of pieces of registered music and robust to signal-level variations of registered music. For its implementation, we define the new concepts of 'music word' and 'music phoneme' as recognition units to construct 'music acoustic models'. Then, with these concepts, we apply the HMM-based framework used in continuous speech recognition to identify the music. Each music file is transformed to a sequence of 39-dimensional vectors. This sequence of vectors is represented as ordered states with Gaussian mixtures. These ordered states are trained using Baum-Welch re-estimation method. Music files with a suspicious copyright are also transformed to a sequence of vectors. Then, the most probable music file is identified using Viterbi algorithm through the music identification network. We implemented a music identification system for 1,000 MP3 music files and tested this system with variations in terms of MP3 bit rate and music speed rate. Our proposed music identification system demonstrates robust performance to signal variations. In addition, scalability of this system is independent of the number of registered music files, since our system is based on HMM method.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.