포만트 등의 음향학적인 정보를 이용하지 않는 연속음성인식 (CSR)을 위한 벡터 양자화기 기반의 화자 정규화 방법을 제안한다. 이 방법은 앞서 제안한 간단한 숫자음 인식기를 위한 화자정규화 방법을 개선한 것으로, 코드북의 크기를 증가시켜 가면서 벡터양자화기를 반복적으로 학습시킴으로써 정규화된 코드북을 구한 다음, 치를 이용하여 시험용화자의 워핑계수를 추정한다. 코드북 생성과 워핑계수 추정을 위해 모음 음소의 집합과 자음과 모음을 포함한 모든 음소의 집합 등 두 가지 음소집합을 이용i,겨 실험하였으며, 추정한 워핑계수에 상응하는 구간선형 워핑함수를 이용하여 인식기의 학습과 시험에 사용될 특징벡터를 워핑하였다. TIMIT 코퍼스와 HTK toolkit을 이용한 음소인식 실험을 수행하여 제안하는 방법의 성능을 조사한 결과, 포만트를 이용한 워핑 방법과 비슷한 성능을 가짐을 확인하였다.
본 논문에서는 한국과학기술원(KAIST) 통신연구실에서 개발한 한국어 음성 데이터베이스의 개발에 관하여 기술한다. 음성 데이터베이스의 구축을 위하여 사용된 절차와 환경, 및 데이터베이스의 음성학적, 언어학적 성질들이 상세히 기술된다. 데이터베이스는 음성인식 알고리듬의 개발 및 평가를 위하여 사용되도록 고안되었다. 데이터베이스는 5종류의 음성 데이터, 즉 3천단어 규모의 무역관련 연속음성, 가변길이 연결 숫자음, phoneme-balanced75 고립단어, 지역명 관련 500 고립단어, 한국어 아-세트로 구성되어 있다.
This paper describes the implementation of recognition of speaker - dependent Korean spoken continuous digits. The recognition system can be divided into two parts, acoustic - phonetic processor and lexical decoder. Acoustic - phonetic processor calculates the feature vectors from input speech signal and the performs frame labelling and phone labelling. Frame labelling is performed by Bayesian classification method and phone labelling is performed using labelled frame and posteriori probability. The lexical decoder accepts segments (phones) from acoustic - phonetic processor and decodes its lexical structure through phone network which is constructed from phonetic representation of ten digits. The experiment carried out with two sets of 4continuous digits, each set is composed of 35 patterns. An evaluation of the system yielded a pattern accuracy of about 80 percent resulting from a word accuracy of about 95 percent.
We present a statistical analysis of Korean phonological variations using automatic generation of phonetic transcription. We have constructed the automatic generation system of Korean pronunciation variants by applying rules modeling obligatory and optional phonemic changes and allophonic changes. These rules are derived from knowledge-based morphophonological analysis and government standard pronunciation rules. This system is optimized for continuous speech recognition by generating phonetic transcriptions for training and constructing a pronunciation dictionary for recognition. In this paper, we describe Korean phonological variations by analyzing the statistics of phonemic change rule applications for the 60,000 sentences in the Samsung PBS(Phonetic Balanced Sentence) Speech DB. Our results show that the most frequently happening obligatory phonemic variations are in the order of liaison, tensification, aspirationalization, and nasalization of obstruent, and that the most frequently happening optional phonemic variations are in the order of initial consonant h-deletion, insertion of final consonant with the same place of articulation as the next consonants, and deletion of final consonant with the same place of articulation as the next consonants. These statistics can be used for improving the performance of speech recognition systems.
This paper reports the current status of development of the Korean speech recognition platform (ECHOS). We implement new modules including ETSI feature extraction, backward search with trigram, and utterance verification. The ETSI feature extraction module is implemented by converting the public software to an object-oriented program. We show that trigram language modeling in the backward search pass reduces the word error rate from 23.5% to 22% on a large vocabulary continuous speech recognition task. We confirm the utterance verification module by examining word graphs with confidence score.
The effective implementation of advanced speech recognition (ASR) systems necessitates the deployment of sophisticated keyword spotting models that are both responsive and resource-efficient. The initial local detection of user interactions is crucial as it allows for the selective transmission of audio data to cloud services, thereby reducing operational costs and mitigating privacy risks associated with continuous data streaming. In this paper, we address these needs and propose utilizing the Whisper-Tiny model with fine-tuning process to specifically recognize keywords from google speech dataset which includes 65000 audio clips of keyword commands. By adapting the model's encoder and appending a lightweight classification head, we ensure that it operates within the limited resource constraints of local devices. The proposed model achieves the notable test accuracy of 92.94%. This architecture demonstrates the efficiency as on-device model with stringent resources leading to enhanced accessibility in everyday speech recognition applications.
연속 음성 인식 결과를 자연어 처리 기술과 접목시키기 위해 처리해야 할 두가지 문제점이 있다. 첫째는 말하는 단위와 문서의 띄어쓰기 단위가 일치하지 않는다는 것이고, 둘째는 발음시 형태소 내부 및 형태소 간에 음운 변동 현상이 생긴다는 것이다. 본 논문에서는 이 두가지 문제를 어절생성기와 음절복원기로 해결하고, 생성된 결과들을 형태소 분석하여 실패한 결과들은 교정기를 통해 교정하는 연속 음성 인식 후처리 시스템을 구현하였다. 제안한 시스템의 실험은 두 종류의 음성 말뭉치 ?, 교과서 음성 말뭉치와 사설 음성 말뭉치를 대항으로 수행하였다. 각 말뭉치에 대한 성공률은 각각 93.72%, 92.26% 였고, 이 실험으로 제안한 시스템은 음성 말뭉치의 종류에 민감하지 않는 안정된 시스템임을 알 수 있었다.
English native listeners have a tendency to treat strong syllables in a speech stream as the potential initial syllables of new words, since the majority of lexical words in English have a word-initial stress. The current study investigates whether Korean (L1) - English (L2) late bilinguals perceive strong syllables in English continuous speech as word onsets, as English native listeners do. In Experiment 1, word-spotting was slower when the word-initial syllable was strong, indicating that Korean listeners do not perceive strong syllables as word onsets. Experiment 2 was conducted in order to avoid any possibilities that the results of Experiment 1 may be due to the strong-initial targets themselves used in Experiment 1 being slower to recognize than the weak-initial targets. We employed the gating paradigm in Experiment 2, and measured the Isolation Point (IP, the point at which participants correctly identify a word without subsequently changing their minds) and the Recognition Point (RP, the point at which participants correctly identify the target with 85% or greater confidence) for the targets excised from the non-words in the two conditions of Experiment 1. Both the mean IPs and the mean RPs were significantly earlier for the strong-initial targets, which means that the results of Experiment 1 reflect the difficulty of segmentation when the initial syllable of words was strong. These results are consistent with Kim & Nam (2011), indicating that strong syllables are not perceived as word onsets for Korean listeners and interfere with lexical segmentation in English running speech.
잡음에 강한 음성인식시스템을 위하여 주파수 차감법을 사용할 경우 음성 신호마저 차감하여 신호를 더욱 부식시키는 경우가 존재한다. 본 연구에서는 이러한 경우를 위해서 프레임 마다 추정 잡음과 차감 신호의 SNR(Signal to Noise Ratio) 함수로부터 반연속 HMM(Hidden Markov Model)의 가우시안 함수를 변형 및 결정하는 방법을 제안한다. 이 방법의 타당성을 위해 프레임마다 추정 잡음의 오류 정도가 추정 잡음의 크기와 관계함을 신호 파형 형태로써 보였으며, 이러한 이유에서 SNR을 기준으로 가우시안 함수를 변형 및 결정하게 된다. 실험에서 80㎞/h 이상의 속도로 달리는 차량 내에서 배경 잡음과 음성이 혼합되었을 때의 음성 인식율을 평가하였다. 그 결과 주파수 차감한 경우와 차감하지 않은 경우에 비해 본 논문에서 제안한 SNR에 의한 가우시안 결정 방법이 더욱 향상된 인식율을 보였다.
본 논문에서는 단어 조음결합의 음성학적 모델을 이용한 한국어 연속음성 인식에 관해 연구한다. 조음결합 현상에 의한 성능 감소를 줄이기 위해 단어내에서의 전이뿐만 아니라 단어간의 전이를 모델링하는 context-dependent (CD)단위를 사용한다. 모든 경우에서 각 단어의 첫 음소는 앞에 올 수 있는 모든 단어의 마지막 음소에 의해 지정되며, 각 단어의 마지막 음소도 유사한 방법으로 지정된다. Hidden Markov model (HMM) 파라미터들의 강인성을 개선하기 위해 공분산 행렬을 평활화한다. 또한 음성 단위들 사이의 분별력을 높이기 위해 position-dependent 단위를 사용한다. 실험 결과들은 개선된 조음결합 모델을 사용함으로서 intra-word 단위만을 사용하는 기본 인식 시스템에 비해 성능을 상당히 개선할 수 있음을 보여 주었다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.