• Title/Summary/Keyword: Continuous Systems

Search Result 2,891, Processing Time 0.032 seconds

The Effect of Patent Citation Relationship on Business Performance : A Social Network Analysis Perspective (특허 인용 관계가 기업 성과에 미치는 영향 : 소셜네트워크분석 관점)

  • Park, Jun Hyung;Kwahk, Kee-Young
    • Journal of Intelligence and Information Systems
    • /
    • v.19 no.3
    • /
    • pp.127-139
    • /
    • 2013
  • With an advent of recent knowledge-based society, the interest in intellectual property has increased. Firms have tired to result in productive outcomes through continuous innovative activity. Especially, ICT firms which lead high-tech industry have tried to manage intellectual property more systematically. Firm's interest in the patent has increased in order to manage the innovative activity and Knowledge property. The patent involves not only simple information but also important values as information of technology, management and right. Moreover, as the patent has the detailed contents regarding technology development activity, it is regarded as valuable data. The patent which reflects technology spread and research outcomes and business performances are closely interrelated as the patent is considered as a significant the level of firm's innovation. As the patent information which represents companies' intellectual capital is accumulated continuously, it has become possible to do quantitative analysis. The advantages of patent in the related industry information and it's standardize information can be easily obtained. Through the patent, the flow of knowledge can be determined. The patent information can analyze in various levels from patent to nation. The patent information is used to analyze technical status and the effects on performance. The patent which has a high frequency of citation refers to having high technological values. Analyzing the patent information contains both citation index analysis using the number of citation and network analysis using citation relationship. Network analysis can provide the information on the flows of knowledge and technological changes, and it can show future research direction. Studies using the patent citation analysis vary academically and practically. For the citation index research, studies to analyze influential big patent has been conducted, and for the network analysis research, studies to find out the flows of technology in a certain industry has been conducted. Social network analysis is applied not only in the sociology, but also in a field of management consulting and company's knowledge management. Research of how the company's network position has an impact on business performances has been conducted from various aspects in a field of network analysis. Social network analysis can be based on the visual forms. Network indicators are available through the quantitative analysis. Social network analysis is used when analyzing outcomes in terms of the position of network. Social network analysis focuses largely on centrality and structural holes. Centrality indicates that actors having central positions among other actors have an advantage to exert stronger influence for exchange relationship. Degree centrality, betweenness centrality and closeness centrality are used for centrality analysis. Structural holes refer to an empty place in social structure and are defined as efficiency and constraints. This study stresses and analyzes firms' network in terms of the patent and how network characteristics have an influence on business performances. For the purpose of doing this, seventy-four ICT companies listed in S&P500 are chosen for the sample. UCINET6 is used to analyze the network structural characteristics such as outdegree centrality, betweenness centrality and efficiency. Then, regression analysis test is conducted to find out how these network characteristics are related to business performance. It is found that each network index has significant impacts on net income, i.e. business performance. However, it is found that efficiency is negatively associated with business performance. As the efficiency increases, net income decreases and it has a negative impact on business performances. Furthermore, it is shown that betweenness centrality solely has statistically significance for the multiple regression analysis with three network indexes. The patent citation network analysis shows the flows of knowledge between firms, and it can be expected to contribute to company's management strategies by analyzing company's network structural positions.

Smartphone Security Using Fingerprint Password (다중 지문 시퀀스를 이용한 스마트폰 보안)

  • Bae, Kyoung-Yul
    • Journal of Intelligence and Information Systems
    • /
    • v.19 no.3
    • /
    • pp.45-55
    • /
    • 2013
  • Thereby using smartphone and mobile device be more popular the more people utilize mobile device in many area such as education, news, financial. In January, 2007 Apple release i-phone it touch off rapid increasing in user of smartphone and it create new market and these broaden its utilization area. Smartphone use WiFi or 3G mobile radio communication network and it has a feature that can access to internet whenever and anywhere. Also using smartphone application people can search arrival time of public transportation in real time and application is used in mobile banking and stock trading. Computer's function is replaced by smartphone so it involves important user's information such as financial and personal pictures, videos. Present smartphone security systems are not only too simple but the unlocking methods are spreading out covertly. I-phone is secured by using combination of number and character but USA's IT magazine Engadget reveal that it is easily unlocked by using combination with some part of number pad and buttons Android operation system is using pattern system and it is known as using 9 point dot so user can utilize various variable but according to Jonathan smith professor of University of Pennsylvania Android security system is easily unlocked by tracing fingerprint which remains on the smartphone screen. So both of Android and I-phone OS are vulnerable at security threat. Compared with problem of password and pattern finger recognition has advantage in security and possibility of loss. The reason why current using finger recognition smart phone, and device are not so popular is that there are many problem: not providing reasonable price, breaching human rights. In addition, finger recognition sensor is not providing reasonable price to customers but through continuous development of the smartphone and device, it will be more miniaturized and its price will fall. So once utilization of finger recognition is actively used in smartphone and if its utilization area broaden to financial transaction. Utilization of biometrics in smart device will be debated briskly. So in this thesis we will propose fingerprint numbering system which is combined fingerprint and password to fortify existing fingerprint recognition. Consisted by 4 number of password has this kind of problem so we will replace existing 4number password and pattern system and consolidate with fingerprint recognition and password reinforce security. In original fingerprint recognition system there is only 10 numbers of cases but if numbering to fingerprint we can consist of a password as a new method. Using proposed method user enter fingerprint as invested number to the finger. So attacker will have difficulty to collect all kind of fingerprint to forge and infer user's password. After fingerprint numbering, system can use the method of recognization of entering several fingerprint at the same time or enter fingerprint in regular sequence. In this thesis we adapt entering fingerprint in regular sequence and if in this system allow duplication when entering fingerprint. In case of allowing duplication a number of possible combinations is $\sum_{I=1}^{10}\;{_{10}P_i}$ and its total cases of number is 9,864,100. So by this method user retain security the other hand attacker will have a number of difficulties to conjecture and it is needed to obtain user's fingerprint thus this system will enhance user's security. This system is method not accept only one fingerprint but accept multiple finger in regular sequence. In this thesis we introduce the method in the environment of smartphone by using multiple numbered fingerprint enter to authorize user. Present smartphone authorization using pattern and password and fingerprint are exposed to high risk so if proposed system overcome delay time when user enter their finger to recognition device and relate to other biometric method it will have more concrete security. The problem should be solved after this research is reducing fingerprint's numbering time and hardware development should be preceded. If in the future using fingerprint public certification becomes popular. The fingerprint recognition in the smartphone will become important security issue so this thesis will utilize to fortify fingerprint recognition research.

Evaluation of Removal Efficiencies of Heavy Metals Using Brown Seaweed Biosorbent Under Different Biosorption Systems (폐미역을 이용한 생물흡착 시스템별 중금속 제거 효율 평가)

  • Choi, Ik-Won;Seo, Dong-Cheol;Kim, Sung-Un;Kang, Se-Won;Lee, Jun-Bae;Lim, Byung-Jin;Kang, Seok-Jin;Jeon, Weon-Tai;Heo, Jong-Soo;Cho, Ju-Sik
    • Korean Journal of Environmental Agriculture
    • /
    • v.30 no.3
    • /
    • pp.310-315
    • /
    • 2011
  • BACKGROUND: Heavy-metal pollution represents an important environmental problem due to the toxic effects of metals, and their accumulation throughout the food chain leads to serious ecological and health problems. METHODS AND RESULTS: Optimum conditions in continuous-flow stirred tank reactor (CSTR) and packedbed column contactor (PBCC) using brown seaweed biosorbent were investigated. Under optimum conditions from both lab-scale biosorbent systems, removal efficiency of copper (Cu) in a large-scale PBCC system was investigated. Removal capacity of Cu using brown seaweed biosorbent in a lab-scale CSTR system was higher than that in a lab-scale PBCC system. On the other hand, over 48 L/day of flow rate in Cu solution, removal efficiency of Cu in a lab-scale PBCC system was higher than that in a lab-scale CSTR system. Optimum flow rate of Cu was 24 L/day, optimum Cu solution concentration was 100 mg/L. Removal capacity of Cu at different stages was higher in the order of double column biosorption system > single column biosorption system. Under different heavy metals, removal capacities of heavy metal were higher in the order of Pb > Cr > Ni > Mn ${\geq}$ Cu ${\geq}$ Cd ${\fallingdotseq}$ Zn ${\geq}$ Co. Removal capacity of Cu was 138 L in a large-scale PBCC system. Removal capacity of Cu a large-scale PBCC system was similar with in a lab-scale PBCC system. CONCLUSION(s): Therefore, PBCC system using brown seaweed biosorbent was suitable for treating heavy metal wastewater.

Detection of Phantom Transaction using Data Mining: The Case of Agricultural Product Wholesale Market (데이터마이닝을 이용한 허위거래 예측 모형: 농산물 도매시장 사례)

  • Lee, Seon Ah;Chang, Namsik
    • Journal of Intelligence and Information Systems
    • /
    • v.21 no.1
    • /
    • pp.161-177
    • /
    • 2015
  • With the rapid evolution of technology, the size, number, and the type of databases has increased concomitantly, so data mining approaches face many challenging applications from databases. One such application is discovery of fraud patterns from agricultural product wholesale transaction instances. The agricultural product wholesale market in Korea is huge, and vast numbers of transactions have been made every day. The demand for agricultural products continues to grow, and the use of electronic auction systems raises the efficiency of operations of wholesale market. Certainly, the number of unusual transactions is also assumed to be increased in proportion to the trading amount, where an unusual transaction is often the first sign of fraud. However, it is very difficult to identify and detect these transactions and the corresponding fraud occurred in agricultural product wholesale market because the types of fraud are more intelligent than ever before. The fraud can be detected by verifying the overall transaction records manually, but it requires significant amount of human resources, and ultimately is not a practical approach. Frauds also can be revealed by victim's report or complaint. But there are usually no victims in the agricultural product wholesale frauds because they are committed by collusion of an auction company and an intermediary wholesaler. Nevertheless, it is required to monitor transaction records continuously and to make an effort to prevent any fraud, because the fraud not only disturbs the fair trade order of the market but also reduces the credibility of the market rapidly. Applying data mining to such an environment is very useful since it can discover unknown fraud patterns or features from a large volume of transaction data properly. The objective of this research is to empirically investigate the factors necessary to detect fraud transactions in an agricultural product wholesale market by developing a data mining based fraud detection model. One of major frauds is the phantom transaction, which is a colluding transaction by the seller(auction company or forwarder) and buyer(intermediary wholesaler) to commit the fraud transaction. They pretend to fulfill the transaction by recording false data in the online transaction processing system without actually selling products, and the seller receives money from the buyer. This leads to the overstatement of sales performance and illegal money transfers, which reduces the credibility of market. This paper reviews the environment of wholesale market such as types of transactions, roles of participants of the market, and various types and characteristics of frauds, and introduces the whole process of developing the phantom transaction detection model. The process consists of the following 4 modules: (1) Data cleaning and standardization (2) Statistical data analysis such as distribution and correlation analysis, (3) Construction of classification model using decision-tree induction approach, (4) Verification of the model in terms of hit ratio. We collected real data from 6 associations of agricultural producers in metropolitan markets. Final model with a decision-tree induction approach revealed that monthly average trading price of item offered by forwarders is a key variable in detecting the phantom transaction. The verification procedure also confirmed the suitability of the results. However, even though the performance of the results of this research is satisfactory, sensitive issues are still remained for improving classification accuracy and conciseness of rules. One such issue is the robustness of data mining model. Data mining is very much data-oriented, so data mining models tend to be very sensitive to changes of data or situations. Thus, it is evident that this non-robustness of data mining model requires continuous remodeling as data or situation changes. We hope that this paper suggest valuable guideline to organizations and companies that consider introducing or constructing a fraud detection model in the future.

Feasibility Study of Wetland-pond Systems for Water Quality Improvement and Agricultural Reuse (습지-연못 연계시스템에 의한 수질개선과 농업적 재이용 타당성 분석)

  • Jang, Jae-Ho;Jung, Kwang-Wook;Ham, Jong-Hwa;Yoon, Chun-Gyeong
    • Korean Journal of Ecology and Environment
    • /
    • v.37 no.3 s.108
    • /
    • pp.344-354
    • /
    • 2004
  • A pilot study was performed from September 2000 to April 2004 to examine the feasibility of the wetland-pond system for the agricultural reuse of reclaimed water. The wetland system was a subsurface flow type, with a hydraulic residence time of 3.5 days, and the subsequent pond was 8 $m^3$ in volume (2 m ${\times}$ 2 m ${\times}$ 2 m) and operated with intermittent-discharge and continuous flow types. The wetland system was effective in treating the sewage; median removal efficiencies of $BOD_5$ and TSS were above 70.0%, with mean effluent concentrations of 27.1 and 16.8 mg $L^{-1}$, respectively, for these constituents. However, they did often exceed the effluent water quality standards of 20 mg $L^{-1}$. Removal of T-N and T-P was relatively less effective and mean effluent concentrations were approximately 103.2 and 7.2 mg $L^{-1}$, respectively. The wetland system demonstrated high removal rate (92 ${\sim}$ 90%) of microorganisms, but effluent concentrations were in the range of 300 ${\sim}$ 16,000 MPN 100 $mL^{-1}$ which is still high for agricultural reuse. The subsequent pond system provided further treatment of the wetland effluent, and especially additional microorganisms removal in addition to wetland-pond system could reduce the mean concentration to 1,000 MPN 100 $mL^{-1}$ from about $10^5$ MPN 100 $mL^{-1}$ of wetland influent. Other parameters in the pond system showed seasonal variation, and the upper layer of the pond water column became remarkably clear immediately after ice melt. Overall, the wetland system was found to be adequate for treating sewage with stable removal efficiency, and the subsequent pond was effective for further polishing. This study concerned agricultural reuse of reclaimed water using natural systems. Considering stable performance and effective removal of bacterial indicators as well as other water quality parameters, low maintenance, and cost-effectiveness, wetland- pond system was thought to be an effective and feasible alternative for agricultural reuse of reclaimed water in rural area.

The Effects of Game User's Social Capital and Information Privacy Concern on SNGReuse Intention and Recommendation Intention Through Flow (게임 이용자의 사회자본과 개인정보제공에 대한 우려가 플로우를 통해 SNG 재이용의도와 추천의도에 미치는 영향)

  • Lee, Ji-Hyeon;Kim, Han-Ku
    • Management & Information Systems Review
    • /
    • v.37 no.4
    • /
    • pp.21-39
    • /
    • 2018
  • Today, Mobile Instant Message (MIM) has become a communication means which is commonly used by many people as the technology on smart phones has been enhanced. Among the services, KakaoGame creates much profits continuously by using its representative Kakao platform. However, even though the number of users of KakaoGame increases and the characteristics of the users are more diversified, there are few researches on the relationship between the characteristics of the SNG users and the continuous use of the game. Since the social capital that is formed by the SNG users with the acquaintances create the sense of belonging, its role is being emphasized under the environment of social network. In addition, game user's concerns about the information privacy may decrease the trust on a game APP, and it also caused to threaten about the game system. Therefore, this study was designed to examine the structural relationships among SNG users' social capital, concerns about the information privacy, flow, SNG reuse intention and recommendation intention. The results from this study are as follow. First of all, the participants' bridging social capital had a positive effect on the flow of an SNG, but the bonding social capital had a negative effect on the flow of an SNG. In addition, awareness of information privacy concern had a negative effects on the flow of an SNG, but control of information privacy concern had a positive effect on the flow of an SNG. Lastly, the flow of an SNG had a positive effect on the reuse intention and recommendation intention of an SNG. Also, reuse intention of an SNG had a positive effect on the recommendation intention. Based on the results from this study, academic and practical implications can be drawn. First, This study focused on KakaoTalk which has both of the closed and open characteristics of an SNS and it was found that the SNG user's social capital might be a factor influencing each user's behaviors through the user's flow experiences in SNG. Second, this study extends the scope of prior researches by empirically analysing the relationship between the concerns about the SNG user's information privacy and flow of an SNG. Finally, the results of this research can provide practical guidelines to develop effective marketing strategies considering them for SNG companies.

Development of the forecasting model for import volume by item of major countries based on economic, industrial structural and cultural factors: Focusing on the cultural factors of Korea (경제적, 산업구조적, 문화적 요인을 기반으로 한 주요 국가의 한국 품목별 수입액 예측 모형 개발: 한국의, 한국에 대한 문화적 요인을 중심으로)

  • Jun, Seung-pyo;Seo, Bong-Goon;Park, Do-Hyung
    • Journal of Intelligence and Information Systems
    • /
    • v.27 no.4
    • /
    • pp.23-48
    • /
    • 2021
  • The Korean economy has achieved continuous economic growth for the past several decades thanks to the government's export strategy policy. This increase in exports is playing a leading role in driving Korea's economic growth by improving economic efficiency, creating jobs, and promoting technology development. Traditionally, the main factors affecting Korea's exports can be found from two perspectives: economic factors and industrial structural factors. First, economic factors are related to exchange rates and global economic fluctuations. The impact of the exchange rate on Korea's exports depends on the exchange rate level and exchange rate volatility. Global economic fluctuations affect global import demand, which is an absolute factor influencing Korea's exports. Second, industrial structural factors are unique characteristics that occur depending on industries or products, such as slow international division of labor, increased domestic substitution of certain imported goods by China, and changes in overseas production patterns of major export industries. Looking at the most recent studies related to global exchanges, several literatures show the importance of cultural aspects as well as economic and industrial structural factors. Therefore, this study attempted to develop a forecasting model by considering cultural factors along with economic and industrial structural factors in calculating the import volume of each country from Korea. In particular, this study approaches the influence of cultural factors on imports of Korean products from the perspective of PUSH-PULL framework. The PUSH dimension is a perspective that Korea develops and actively promotes its own brand and can be defined as the degree of interest in each country for Korean brands represented by K-POP, K-FOOD, and K-CULTURE. In addition, the PULL dimension is a perspective centered on the cultural and psychological characteristics of the people of each country. This can be defined as how much they are inclined to accept Korean Flow as each country's cultural code represented by the country's governance system, masculinity, risk avoidance, and short-term/long-term orientation. The unique feature of this study is that the proposed final prediction model can be selected based on Design Principles. The design principles we presented are as follows. 1) A model was developed to reflect interest in Korea and cultural characteristics through newly added data sources. 2) It was designed in a practical and convenient way so that the forecast value can be immediately recalled by inputting changes in economic factors, item code and country code. 3) In order to derive theoretically meaningful results, an algorithm was selected that can interpret the relationship between the input and the target variable. This study can suggest meaningful implications from the technical, economic and policy aspects, and is expected to make a meaningful contribution to the export support strategies of small and medium-sized enterprises by using the import forecasting model.

A Study on Moral Systems of Aristotle and Kang Jeungsan: Focusing on the Nature of Virtue and Teleological Characteristics (아리스토텔레스와 강증산(姜甑山) 성사(聖師)의 덕(德)이론 고찰 -덕의 속성 및 목적성과 관련하여-)

  • Joo So-yeon;Ko Nam-sik
    • Journal of the Daesoon Academy of Sciences
    • /
    • v.46
    • /
    • pp.189-234
    • /
    • 2023
  • The most common and prevailing system of virtue ethics is based around the idea of personality rather than external behavior and it grew out of the Aristotelian system of virtue ethics. The purpose of this study is to find out the characteristics of the virtue ethics found within Daesoon Thought through comparison to Aristotelian virtue ethics. This can serve as a basis to establish the virtue ethics of Daesoon Thought in further studies. The systems of virtue ethics posited by the two traditions are similar in that they are both teleological as the virtues they recognize are related to human nature in the context of certain metaphysical assumption and they both exhibit the characteristic tendencies of seeking to realize the highest human good. Therefore, in the Aristotelian context, virtues can be defined as "characteristics needed for the realization of eudaimonia," and for Daesoon Thought, virtues are "characteristics needed for the realization of the Resolution of Grievances for Mutual Beneficence." The representative virtues examined in this comparative study will be the Aristotelian Golden Mean, and the the concepts of guarding against self-deception and great benevolence and great justice in Daesoon Thought. In comparison to Aristotelian virtues, these differ in three main ways. First, Aristotelian virtue is not an innate aspect of character the way it is assumed to be in Daesoon Thought wherein the original human heart bestowed by Heaven is already virtuous. Second, mental virtue in the Aristotelian context centers the mind upon reason whereas in Daesoon Thought, the heart-mind exhibits both reason and emotional concern for others. Third, eudaimonia is a concept limited to humans and their societies whereas the Resolution of Grievances for Mutual Beneficence is a good that includes all beings including divine beings, animals, plants, and Heaven and Earth. Despite the differences, both require practical reason, continuous education, and effort to succeed in the cultivation of virtues and the proper implementation of virtuous living.

Determinants Affecting Organizational Open Source Software Switch and the Moderating Effects of Managers' Willingness to Secure SW Competitiveness (조직의 오픈소스 소프트웨어 전환에 영향을 미치는 요인과 관리자의 SW 경쟁력 확보의지의 조절효과)

  • Sanghyun Kim;Hyunsun Park
    • Information Systems Review
    • /
    • v.21 no.4
    • /
    • pp.99-123
    • /
    • 2019
  • The software industry is a high value-added industry in the knowledge information age, and its importance is growing as it not only plays a key role in knowledge creation and utilization, but also secures global competitiveness. Among various SW available in today's business environment, Open Source Software(OSS) is rapidly expanding its activity area by not only leading software development, but also integrating with new information technology. Therefore, the purpose of this research is to empirically examine and analyze the effect of factors on the switching behavior to OSS. To accomplish the study's purpose, we suggest the research model based on "Push-Pull-Mooring" framework. This study empirically examines the two categories of antecedents for switching behavior toward OSS. The survey was conducted to employees at various firms that already switched OSS. A total of 268 responses were collected and analyzed by using the structural equational modeling. The results of this study are as follows; first, continuous maintenance cost, vender dependency, functional indifference, and SW resource inefficiency are significantly related to switch to OSS. Second, network-oriented support, testability and strategic flexibility are significantly related to switch to OSS. Finally, the results show that willingness to secures SW competitiveness has a moderating effect on the relationships between push factors and pull factor with exception of improved knowledge, and switch to OSS. The results of this study will contribute to fields related to OSS both theoretically and practically.

Empirical Analysis on Bitcoin Price Change by Consumer, Industry and Macro-Economy Variables (비트코인 가격 변화에 관한 실증분석: 소비자, 산업, 그리고 거시변수를 중심으로)

  • Lee, Junsik;Kim, Keon-Woo;Park, Do-Hyung
    • Journal of Intelligence and Information Systems
    • /
    • v.24 no.2
    • /
    • pp.195-220
    • /
    • 2018
  • In this study, we conducted an empirical analysis of the factors that affect the change of Bitcoin Closing Price. Previous studies have focused on the security of the block chain system, the economic ripple effects caused by the cryptocurrency, legal implications and the acceptance to consumer about cryptocurrency. In various area, cryptocurrency was studied and many researcher and people including government, regardless of country, try to utilize cryptocurrency and applicate to its technology. Despite of rapid and dramatic change of cryptocurrencies' price and growth of its effects, empirical study of the factors affecting the price change of cryptocurrency was lack. There were only a few limited studies, business reports and short working paper. Therefore, it is necessary to determine what factors effect on the change of closing Bitcoin price. For analysis, hypotheses were constructed from three dimensions of consumer, industry, and macroeconomics for analysis, and time series data were collected for variables of each dimension. Consumer variables consist of search traffic of Bitcoin, search traffic of bitcoin ban, search traffic of ransomware and search traffic of war. Industry variables were composed GPU vendors' stock price and memory vendors' stock price. Macro-economy variables were contemplated such as U.S. dollar index futures, FOMC policy interest rates, WTI crude oil price. Using above variables, we did times series regression analysis to find relationship between those variables and change of Bitcoin Closing Price. Before the regression analysis to confirm the relationship between change of Bitcoin Closing Price and the other variables, we performed the Unit-root test to verifying the stationary of time series data to avoid spurious regression. Then, using a stationary data, we did the regression analysis. As a result of the analysis, we found that the change of Bitcoin Closing Price has negative effects with search traffic of 'Bitcoin Ban' and US dollar index futures, while change of GPU vendors' stock price and change of WTI crude oil price showed positive effects. In case of 'Bitcoin Ban', it is directly determining the maintenance or abolition of Bitcoin trade, that's why consumer reacted sensitively and effected on change of Bitcoin Closing Price. GPU is raw material of Bitcoin mining. Generally, increasing of companies' stock price means the growth of the sales of those companies' products and services. GPU's demands increases are indirectly reflected to the GPU vendors' stock price. Making an interpretation, a rise in prices of GPU has put a crimp on the mining of Bitcoin. Consequently, GPU vendors' stock price effects on change of Bitcoin Closing Price. And we confirmed U.S. dollar index futures moved in the opposite direction with change of Bitcoin Closing Price. It moved like Gold. Gold was considered as a safe asset to consumers and it means consumer think that Bitcoin is a safe asset. On the other hand, WTI oil price went Bitcoin Closing Price's way. It implies that Bitcoin are regarded to investment asset like raw materials market's product. The variables that were not significant in the analysis were search traffic of bitcoin, search traffic of ransomware, search traffic of war, memory vendor's stock price, FOMC policy interest rates. In search traffic of bitcoin, we judged that interest in Bitcoin did not lead to purchase of Bitcoin. It means search traffic of Bitcoin didn't reflect all of Bitcoin's demand. So, it implies there are some factors that regulate and mediate the Bitcoin purchase. In search traffic of ransomware, it is hard to say concern of ransomware determined the whole Bitcoin demand. Because only a few people damaged by ransomware and the percentage of hackers requiring Bitcoins was low. Also, its information security problem is events not continuous issues. Search traffic of war was not significant. Like stock market, generally it has negative in relation to war, but exceptional case like Gulf war, it moves stakeholders' profits and environment. We think that this is the same case. In memory vendor stock price, this is because memory vendors' flagship products were not VRAM which is essential for Bitcoin supply. In FOMC policy interest rates, when the interest rate is low, the surplus capital is invested in securities such as stocks. But Bitcoin' price fluctuation was large so it is not recognized as an attractive commodity to the consumers. In addition, unlike the stock market, Bitcoin doesn't have any safety policy such as Circuit breakers and Sidecar. Through this study, we verified what factors effect on change of Bitcoin Closing Price, and interpreted why such change happened. In addition, establishing the characteristics of Bitcoin as a safe asset and investment asset, we provide a guide how consumer, financial institution and government organization approach to the cryptocurrency. Moreover, corroborating the factors affecting change of Bitcoin Closing Price, researcher will get some clue and qualification which factors have to be considered in hereafter cryptocurrency study.