• Title/Summary/Keyword: Continuous Performance

Search Result 2,988, Processing Time 0.036 seconds

A Study on the Sea-water Purification Properties of Porous Concrete (포러스콘크리트의 해수정화특성에 관한 실험적 연구)

  • Seo, Dae-Seuk;Park, Seong-Bum;Lee, Jun;Song, Jae-Lib;Kim, Jung-Hee
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2006.05b
    • /
    • pp.649-652
    • /
    • 2006
  • This paper describe the performance of seawater purification, to which living organisms can adapt, and the physical properties of porous concrete with continuous void. Although conventional concrete has been regarded as a destroyer of nature, seawater and air can pass freely through concrete when it is made porous by forming continuous void. This not only enables plants to vegetables, but also makes it possible for microscopic animals and plants, including bacteria, to attach to and inhabit uneven surface as well as internal voids when the concrete is provided in a natural seawater area or seawater side area. As a result, porous concrete using recycled aggregate improved the performance of seawater purification. In this study, The performance of seawater purification of porous concrete using recycled aggregate analyzed by T-P, T-N.

  • PDF

Design of the Fuzzy Sliding Mode Controller and Neural Network Interpolator for UFV Depth Control

  • Kim, Hyun-Sik;Park, Jin-Hyun;Choi, Young-Kiu
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2001.10a
    • /
    • pp.176.2-176
    • /
    • 2001
  • In Underwater Flight Vehicle depth control system, the followings must be required. First, it needs robust performance which can get over nonlinear characteristics. Second, it needs accurate performance which have small overshoot phenomenon and steady state error. Third, it needs continuous control input. Finally, it needs interpolation method which can solve the speed dependency problem of controller parameters. To solve these problems, we propose adepth control method using Fuzzy Sliding Mode Controller and Neural Network Interpolator. Simulation results show the proposed method has robust and accurate control performance by the continuous control input and has no speed dependency problem.

  • PDF

Depth Control of Underwater Flight Vehicle Using Fuzzy Sliding Mode Controller and Neural Network Interpolator (퍼지 슬라이딩 모드 제어기 및 신경망 보간기를 이용한 Underwater Flight Vehicle의 심도 제어)

  • Kim, Hyun-Sik;Park, Jin-Hyun;Choi, Young-Kiu
    • The Transactions of the Korean Institute of Electrical Engineers D
    • /
    • v.50 no.8
    • /
    • pp.367-375
    • /
    • 2001
  • In Underwater Flight Vehicle depth control system, the followings must be required. First, it needs robust performance which can get over modeling error, parameter variation and disturbance. Second, it needs accurate performance which have small overshoot phenomenon and steady state error to avoid colliding with ground surface or obstacles. Third, it needs continuous control input to reduce the acoustic noise and propulsion energy consumption. Finally, it needs interpolation method which can sole the speed dependency problem of controller parameters. To solve these problems, we propose a depth control method using Fuzzy Sliding Mode Controller with feedforward control-plane bias term and Neural Network Interpolator. Simulation results show the proposed method has robust and accurate control performance by the continuous control input and has no speed dependency problem.

  • PDF

Treatment of $NH_3-N$ in Drinking Water Using Ion Exchange (이온교환을 이용한 음용수의 $NH_3-N$ 처리)

  • Chae, Yong-Gon
    • Journal of environmental and Sanitary engineering
    • /
    • v.23 no.1
    • /
    • pp.67-72
    • /
    • 2008
  • Ion exchange performance to remove Ammonium in water was studied using commercially available strong acidic cationic exchange resin of $Na^+$ type in the batch and continuous column reactors. The performance was tested using the effluent concentration histories for continuous column or equilibrium concentrations for batch reactor as a function of time until resins were exhausted or reached ionic equilibrium between resin and solution. The results shoed that cationic exchange resin used in this study was more effective than activated carbon or zeolite for ammonium removal. Ammonium removal with the ion exchange resin temperature to be high qualitative recording minuteness but increases about seasonal change of temperature was judged with the public law where the adaptability is excellent. When the pH comes to be high at 11 degree, the ammonium was not effectively removed.

A Study on the Fuzzy-PID Depth Control of Underwater Flight Vehicle (Underwater Flight Vehicle의 퍼지-PID 심도 제어에 관한 연구)

  • 김현식
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.3 no.2
    • /
    • pp.71-80
    • /
    • 2000
  • In Underwater Flight Vehicle depth control system, the followings must be required. Firstly, It need robust depth control performance which can get over parameter variation, modeling error and disturbance. Secondly, It need no oveshoot phenomenon to avoid colliding with ground surface and obstables. Thirdly, It need continuous control input to reduce the acoustic noise and propulsion energy consumption. Finally, It need effective interpolation method which can reduce the dependency of control parameters on speed. To solve these problems, we propose the Fuzzy-PID depth controller with the control parameter interpolators. Simulation results show the proposed control scheme has robust and accurate performance with continuous control input.

  • PDF

Effects of Imperfect Sinusoidal Input Currents on the Performance of a Boost PFC Pre-Regulator

  • Cheung, Martin K.H.;Chow, Martin H.L.;Lai, Y.M.;Loo, K.H.
    • Journal of Power Electronics
    • /
    • v.12 no.5
    • /
    • pp.689-698
    • /
    • 2012
  • This paper investigates the effects of applying different input current waveshapes on the performance of a continuous-conduction-mode (CCM) power-factor-correction (PFC) boost pre-regulator. It is found that the output voltage ripple of the pre-regulator can be reduced if the input current is modified to include controlled amount of higher order harmonics. This finding allows us to balance the performance of output regulation and the harmonic current emission when coming to the design of the pre-regulator. An experimental PFC boost pre-regulator prototype is constructed to verify the analysis and show the benefit of the pre-regulator operating with input current containing higher order harmonics.

The study on the high performance continuous input current type PWM AC/DC boost converter using one semiconduction switch (단일 스위칭소자를 이용한 전류연속형 PWM AC/DC 부스터 콘버어터의 고역율 구현에 관한 연구)

  • Park, Sung-Jun;Byun, Young-Bok;Kim, Kwang-Tae;Kwon, Soon-Jae;Kim, Cheul-U
    • Proceedings of the KIEE Conference
    • /
    • 1995.07a
    • /
    • pp.379-381
    • /
    • 1995
  • Many new electronic products are required to have a near unity power factor and a distortion free input current waveform. In this paper, a high performance single phase PWM AC/DC converter with input power factor correction is proposed. This proposed control strategy has many advantages which include one semiconduction switch, simplified control circuit, high performance features and continuous input current. The experimental results are included to verify the validity of this approach.

  • PDF

A Study on the Effect Factor of End User's Satisfaction for Smart Work System's Success : Focused on P Corporation (스마트워크 시스템 성공을 위한 사용자 만족의 영향요인에 대한 연구 : P그룹사를 중심으로)

  • Jung, Chang Hyun;Hwang, Chan-Gyu;Hong, Soon-Geun
    • Journal of Information Technology Applications and Management
    • /
    • v.20 no.3_spc
    • /
    • pp.259-278
    • /
    • 2013
  • At the center of the repeating evolution of IT industry, there is mobile computing in the ubiquitous environment, and the increasing usage of smart phones contribute more to its growth. P corporation co-developed with Google and implemented smart work system called SWP for the purpose of 'communication and collaboration with co-workers' beyond the general goal of increasing productivity and comfort of employees. The primary objective of this study is to objectively analyze the influence of the effect factor from end user's perspective and user satisfaction on SWP usage, intention for continuous usage and individual performance. To accomplish this research purpose, this study established research models and hypothesis by collective review about information system success models, and tested the research hypotheses using the structural equation modeling technique by data collected from 320 SWP system users of P corporation. Variations for system satisfaction evaluation standard are 1)SW system usage 2) intention for continuous usage 3) individual performance, effect variations are 1) social factors 2) technical factors 3) combination of social and technical factors. Therefore, this study is about influence factors on success of SWP system and how the factors impact the outcome. The test results of this research model is summarized as follows. Firstly, system user's satisfaction had positive impact on all three; SWP system usage, intention for continuous usage and individual performance. Secondly, social factor 'SWP control system' and technical factor 'information quality' and 'system quality' had positive impact on SWP system user satisfaction, while social factor 'shared value' and technical factor 'service quality' did not have significant effect on user satisfaction. Shared value however, had interactive effect with 'information quality' and 'service quality'. This study is expected to contribute to spread of academic research on smart work system by suggesting a model that can show important factors for corporation while explaining the successful implementation of SWP and its continuous usage.

A study on the target detection method of the continuous-wave active sonar in reverberation based on beamspace-domain multichannel nonnegative matrix factorization (빔공간 다채널 비음수 행렬 분해에 기초한 잔향에서의 지속파 능동 소나 표적 탐지 기법에 대한 연구)

  • Lee, Seokjin
    • The Journal of the Acoustical Society of Korea
    • /
    • v.37 no.6
    • /
    • pp.489-498
    • /
    • 2018
  • In this paper, a target detection method based on beamspace-domain multichannel nonnegative matrix factorization is studied when an echo of continuous-wave ping is received from a low-Doppler target in reverberant environment. If the receiver of the continuous-wave active sonar moves, the frequency range of the reverberation is broadened due to the Doppler effect, so the low-Doppler target echo is interfered by the reverberation in this case. The developed algorithm analyzes the multichannel spectrogram of the received signal into frequency bases, time bases, and beamformer gains using the beamspace-domain multichannel nonnnegative matrix factorization, then the algorithm estimates the frequency, time, and bearing of target echo by choosing a proper basis. To analyze the performance of the developed algorithm, simulations were performed in various signal-to-reverberation conditions. The results show that the proposed algorithm can estimate the frequency, time, and bearing, but the performance was degraded in the low signal-to-reverberation condition. It is expected that modifying the selection algorithm of the target echo basis can enhance the performance according to the simulation results.

Wind resistance performance of a continuous welding stainless steel roof under static ultimate wind loading with testing and simulation methods

  • Wang, Dayang;Zhao, Zhendong;Ou, Tong;Xin, Zhiyong;Wang, Mingming;Zhang, Yongshan
    • Wind and Structures
    • /
    • v.32 no.1
    • /
    • pp.55-69
    • /
    • 2021
  • Ultrapure ferritic stainless steel provides a new generation of long-span metal roof systems with continuous welding technology, which exhibits many unknown behaviors during wind excitation. This study focuses on the wind-resistant capacity of a new continuous welding stainless steel roof (CWSSR) system. Full-scale testing on the welding joints and the CWSSR system is performed under uniaxial tension and static ultimate wind uplift loadings, respectively. A finite element model is developed with mesh refinement optimization and is further validated with the testing results, which provides a reliable way of investigating the parameter effect on the wind-induced structural responses, namely, the width and thickness of the roof sheeting and welding height. Research results show that the CWSSR system has predominant wind-resistant performance and can bear an ultimate wind uplift loading of 10.4 kPa without observable failures. The welding joints achieve equivalent mechanical behaviors as those of base material is produced with the current of 65 A. Independent structural responses can be found for the roof sheeting of the CWSSR system, and the maximum displacement appears at the middle of the roof sheeting, while the maximum stress appears at the connection supports between the roof sheeting with a significant stress concentration effect. The responses of the CWSSR system are greatly influenced by the width and thickness of the roof sheeting but are less influenced by the welding height.