• Title/Summary/Keyword: Context-based Similarity

Search Result 87, Processing Time 0.029 seconds

Research Methodology on the Symbolism of Ritual Dress and Its Applications (의례복식의 상징작용에 관한 연구방법론과 그 적용)

  • 이은주
    • Journal of the Korean Society of Clothing and Textiles
    • /
    • v.19 no.2
    • /
    • pp.203-215
    • /
    • 1995
  • The funning process in the symbolism of dress can be approached by the semiotics of C. S. Pierce. According to Pearce\ulcorners theory, symbiosis consists of sign, its object, and interpret ant. Especially Pierce classifies the sign into three categories; icon, index, and symbol. The icon is based on the similarity in properties and forms, and the index is based on the actual connection with their objects, while the symbol is based on the association of interpret ant. This classification method can be considered as a theoretical base for symbol of ritual dress. On the other hand, it was discussed the analyzing method of the concept of dress same (symbolic element) by introducing the isolate concept of structuralism for explaining how the symbol reveals itself. So it is discussed the several concepts of structuralism; the concept of relation syntagmatique and relation paradigmatique, the relation binaries, and the units. It would be also necessary to consider dimension of context in addition to dimension of dress itself for the dimension of total symbolic elements of ritual dress. It is proposed that the above developed dress symbol elements should be used for under\ulcornerstanding the society or culture that includes the elements by introducing the symbolic anthropology such as V. Turner's three dimensions of symbol.

  • PDF

Context Sharing Framework Based on Time Dependent Metadata for Social News Service (소셜 뉴스를 위한 시간 종속적인 메타데이터 기반의 컨텍스트 공유 프레임워크)

  • Ga, Myung-Hyun;Oh, Kyeong-Jin;Hong, Myung-Duk;Jo, Geun-Sik
    • Journal of Intelligence and Information Systems
    • /
    • v.19 no.4
    • /
    • pp.39-53
    • /
    • 2013
  • The emergence of the internet technology and SNS has increased the information flow and has changed the way people to communicate from one-way to two-way communication. Users not only consume and share the information, they also can create and share it among their friends across the social network service. It also changes the Social Media behavior to become one of the most important communication tools which also includes Social TV. Social TV is a form which people can watch a TV program and at the same share any information or its content with friends through Social media. Social News is getting popular and also known as a Participatory Social Media. It creates influences on user interest through Internet to represent society issues and creates news credibility based on user's reputation. However, the conventional platforms in news services only focus on the news recommendation domain. Recent development in SNS has changed this landscape to allow user to share and disseminate the news. Conventional platform does not provide any special way for news to be share. Currently, Social News Service only allows user to access the entire news. Nonetheless, they cannot access partial of the contents which related to users interest. For example user only have interested to a partial of the news and share the content, it is still hard for them to do so. In worst cases users might understand the news in different context. To solve this, Social News Service must provide a method to provide additional information. For example, Yovisto known as an academic video searching service provided time dependent metadata from the video. User can search and watch partial of video content according to time dependent metadata. They also can share content with a friend in social media. Yovisto applies a method to divide or synchronize a video based whenever the slides presentation is changed to another page. However, we are not able to employs this method on news video since the news video is not incorporating with any power point slides presentation. Segmentation method is required to separate the news video and to creating time dependent metadata. In this work, In this paper, a time dependent metadata-based framework is proposed to segment news contents and to provide time dependent metadata so that user can use context information to communicate with their friends. The transcript of the news is divided by using the proposed story segmentation method. We provide a tag to represent the entire content of the news. And provide the sub tag to indicate the segmented news which includes the starting time of the news. The time dependent metadata helps user to track the news information. It also allows them to leave a comment on each segment of the news. User also may share the news based on time metadata as segmented news or as a whole. Therefore, it helps the user to understand the shared news. To demonstrate the performance, we evaluate the story segmentation accuracy and also the tag generation. For this purpose, we measured accuracy of the story segmentation through semantic similarity and compared to the benchmark algorithm. Experimental results show that the proposed method outperforms benchmark algorithms in terms of the accuracy of story segmentation. It is important to note that sub tag accuracy is the most important as a part of the proposed framework to share the specific news context with others. To extract a more accurate sub tags, we have created stop word list that is not related to the content of the news such as name of the anchor or reporter. And we applied to framework. We have analyzed the accuracy of tags and sub tags which represent the context of news. From the analysis, it seems that proposed framework is helpful to users for sharing their opinions with context information in Social media and Social news.

Smart Affect Jewelry based on Multi-modal (멀티 모달 기반의 스마트 감성 주얼리)

  • Kang, Yun-Jeong
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.20 no.7
    • /
    • pp.1317-1324
    • /
    • 2016
  • Utilizing the Arduino platform to express the emotions that reflect the colors expressed the jewelry. Emotional color expression utilizes Plutchik's Wheel of Emotions model was applied to the similarity of emotions and colors. It receives the recognized value from the temperature, lighting, sound, pulse sensor and gyro sensor of a smart jewelery that can be easily accessible from your smartphone processes that recognize and process the emotion applied the rules of inference based on ontology. The emotional feelings color depending on the color looking for the emotion seen in context and applied to the smart LED jewelry. The emotion and the color combination of contextual information extracted from the recognition sensors are reflected in the built-in smart LED Jewelry depending on the emotions of the wearer. Take a light plus the emotion in a smart jewelery can represent the emotions of the situation, the doctor will be able to be a tool of representation.

Multi-Human Behavior Recognition Based on Improved Posture Estimation Model

  • Zhang, Ning;Park, Jin-Ho;Lee, Eung-Joo
    • Journal of Korea Multimedia Society
    • /
    • v.24 no.5
    • /
    • pp.659-666
    • /
    • 2021
  • With the continuous development of deep learning, human behavior recognition algorithms have achieved good results. However, in a multi-person recognition environment, the complex behavior environment poses a great challenge to the efficiency of recognition. To this end, this paper proposes a multi-person pose estimation model. First of all, the human detectors in the top-down framework mostly use the two-stage target detection model, which runs slow down. The single-stage YOLOv3 target detection model is used to effectively improve the running speed and the generalization of the model. Depth separable convolution, which further improves the speed of target detection and improves the model's ability to extract target proposed regions; Secondly, based on the feature pyramid network combined with context semantic information in the pose estimation model, the OHEM algorithm is used to solve difficult key point detection problems, and the accuracy of multi-person pose estimation is improved; Finally, the Euclidean distance is used to calculate the spatial distance between key points, to determine the similarity of postures in the frame, and to eliminate redundant postures.

The Effect of an Instruction Using Analog Systematically in Middle School Science Class (중학교 과학 수업에서 비유물을 체계적으로 사용한 수업의 효과)

  • Noh, Tae-Hee;Kwon, Hyeok-Soon;Lee, Seon-Uk
    • Journal of The Korean Association For Science Education
    • /
    • v.17 no.3
    • /
    • pp.323-332
    • /
    • 1997
  • In order to use analog more systematically in science class, an instructional model was designed on the basis of analogical reasoning processes (encoding, inference, mapping, application, and response) in the Sternberg's component process theory. The model has five phases (introducing target context, cue retrieval of analog context, mapping similarity and drawing target concept, application, and elaboration), and the instructional effects of using the model upon students' comprehension of science concepts and motivation level of learning were investigated. The treatment and control groups (1 class each) were selected from 8th-grade classes and taught about chemical change and chemical reaction for the period of 10 class hours. The treatment group was taught with the materials based on the model, while the control group was taught in traditional instruction without using analog. Before the instructions, modified versions of the Patterns of Adaptive Learning Survey and the Group Assessment of Logical Thinking were administered, and their scores were used as covariates for students' conceptions and motivational level of learning, respectively. Analogical reasoning ability test was also administered, and its score was used as a blocking variable. After the instructions, students' conceptions were measured by a researcher-made science conception test, and their motivational level of learning was measured by a modified version of the Instructional Materials Motivation Scale. The results indicated that the adjusted mean score of the conception test for the treatment group was significantly higher than that of the control group at .01 level of significance. No significant interaction between the instruction and the analogical reasoning ability was found. Although the motivational level of learning for the treatment group was higher than that for the control group, the difference was found to be statistically insignificant. Educational implications are discussed.

  • PDF

Alleviating Semantic Term Mismatches in Korean Information Retrieval (한국어 정보 검색에서 의미적 용어 불일치 완화 방안)

  • Yun, Bo-Hyun;Park, Sung-Jin;Kang, Hyun-Kyu
    • The Transactions of the Korea Information Processing Society
    • /
    • v.7 no.12
    • /
    • pp.3874-3884
    • /
    • 2000
  • An information retrieval system has to retrieve all and only documents which are relevant to a user query, even if index terms and query terms are not matched exactly. However, term mismatches between index terms and qucry terms have been a serious obstacle to the enhancement of retrieval performance. In this paper, we discuss automatic term normalization between words in text corpora and their application to a Korean information retrieval system. We perform two types of term normalizations to alleviate semantic term mismatches: equivalence class and co-occurrence cluster. First, transliterations, spelling errors, and synonyms are normalized into equivalence classes bv using contextual similarity. Second, context-based terms are normalized by using a combination of mutual information and word context to establish word similarities. Next, unsupervised clustering is done by using K-means algorithm and co-occurrence clusters are identified. In this paper, these normalized term products are used in the query expansion to alleviate semantic tem1 mismatches. In other words, we utilize two kinds of tcrm normalizations, equivalence class and co-occurrence cluster, to expand user's queries with new tcrms, in an attempt to make user's queries more comprehensive (adding transliterations) or more specific (adding spc'Cializationsl. For query expansion, we employ two complementary methods: term suggestion and term relevance feedback. The experimental results show that our proposed system can alleviatl' semantic term mismatches and can also provide the appropriate similarity measurements. As a result, we know that our system can improve the rctrieval efficiency of the information retrieval system.

  • PDF

Export Control System based on Case Based Reasoning: Design and Evaluation (사례 기반 지능형 수출통제 시스템 : 설계와 평가)

  • Hong, Woneui;Kim, Uihyun;Cho, Sinhee;Kim, Sansung;Yi, Mun Yong;Shin, Donghoon
    • Journal of Intelligence and Information Systems
    • /
    • v.20 no.3
    • /
    • pp.109-131
    • /
    • 2014
  • As the demand of nuclear power plant equipment is continuously growing worldwide, the importance of handling nuclear strategic materials is also increasing. While the number of cases submitted for the exports of nuclear-power commodity and technology is dramatically increasing, preadjudication (or prescreening to be simple) of strategic materials has been done so far by experts of a long-time experience and extensive field knowledge. However, there is severe shortage of experts in this domain, not to mention that it takes a long time to develop an expert. Because human experts must manually evaluate all the documents submitted for export permission, the current practice of nuclear material export is neither time-efficient nor cost-effective. Toward alleviating the problem of relying on costly human experts only, our research proposes a new system designed to help field experts make their decisions more effectively and efficiently. The proposed system is built upon case-based reasoning, which in essence extracts key features from the existing cases, compares the features with the features of a new case, and derives a solution for the new case by referencing similar cases and their solutions. Our research proposes a framework of case-based reasoning system, designs a case-based reasoning system for the control of nuclear material exports, and evaluates the performance of alternative keyword extraction methods (full automatic, full manual, and semi-automatic). A keyword extraction method is an essential component of the case-based reasoning system as it is used to extract key features of the cases. The full automatic method was conducted using TF-IDF, which is a widely used de facto standard method for representative keyword extraction in text mining. TF (Term Frequency) is based on the frequency count of the term within a document, showing how important the term is within a document while IDF (Inverted Document Frequency) is based on the infrequency of the term within a document set, showing how uniquely the term represents the document. The results show that the semi-automatic approach, which is based on the collaboration of machine and human, is the most effective solution regardless of whether the human is a field expert or a student who majors in nuclear engineering. Moreover, we propose a new approach of computing nuclear document similarity along with a new framework of document analysis. The proposed algorithm of nuclear document similarity considers both document-to-document similarity (${\alpha}$) and document-to-nuclear system similarity (${\beta}$), in order to derive the final score (${\gamma}$) for the decision of whether the presented case is of strategic material or not. The final score (${\gamma}$) represents a document similarity between the past cases and the new case. The score is induced by not only exploiting conventional TF-IDF, but utilizing a nuclear system similarity score, which takes the context of nuclear system domain into account. Finally, the system retrieves top-3 documents stored in the case base that are considered as the most similar cases with regard to the new case, and provides them with the degree of credibility. With this final score and the credibility score, it becomes easier for a user to see which documents in the case base are more worthy of looking up so that the user can make a proper decision with relatively lower cost. The evaluation of the system has been conducted by developing a prototype and testing with field data. The system workflows and outcomes have been verified by the field experts. This research is expected to contribute the growth of knowledge service industry by proposing a new system that can effectively reduce the burden of relying on costly human experts for the export control of nuclear materials and that can be considered as a meaningful example of knowledge service application.

A Study of Recommendation Systems for Supporting Command and Control (C2) Workflow (지휘통제 워크플로우 지원 추천 시스템 연구)

  • Park, Gyudong;Jeon, Gi-Yoon;Sohn, Mye;Kim, Jongmo
    • Journal of Internet Computing and Services
    • /
    • v.23 no.1
    • /
    • pp.125-134
    • /
    • 2022
  • The development of information communication and artificial intelligence technology requires the intelligent command and control (C2) system for Korean military, and various studies are attempted to achieve it. In particular, as a volume ofinformation in the C2 workflow increases exponentially, this study pays attention to the collaborative filtering (CF) and recommendation systems (RS) that can provide the essential information for the users of the C2 system has been developed. The RS performing information filtering in the C2 system should provide an explanatory recommendation and consider the context of the tasks and users. In this paper, we propose a contextual pre-filtering CARS framework that recommends information in the C2 workflow. The proposed framework consists of four components: 1) contextual pre-filtering that filters data in advance based on the context and relationship of the users, 2) feature selection to overcome the data sparseness that is a weak point for the CF, 3) the proposed CF with the features distances between the users used to calculate user similarity, and 4) rule-based post filtering to reflect user preferences. In order to evaluate the superiority of this study, various distance methods of the existing CF method were compared to the proposed framework with two experimental datasets in real-world. As a result of comparative experiments, it was shown that the proposed framework was superior in terms of MAE, MSE, and MSLE.

3D Visualization of Compound Knowledge using SOM(Self-Organizing Map) (SOM을 이용한 복합지식의 3D 가시화 방법)

  • Kim, Gui-Jung;Han, Jung-Soo
    • The Journal of the Korea Contents Association
    • /
    • v.11 no.5
    • /
    • pp.50-56
    • /
    • 2011
  • This paper proposes 3D visualization method of compound knowledge which will be able to identify and search easily compound knowledge objects based the multidimensional relationship. For this, we structurized a compound knowledge with link and node which become the semantic network. and we suggested 3D visualization method using SOM. Also, to arrange compound knowledge from 3D space and to provide the chance of realistic and intuitional information retrieval to the user, we proposed compound knowledge 3D clustering methods using object similarity. Compound knowledge 3D visualization and clustering using SOM will be the optimum method to appear context of compound knowledge and connectivity in space-time.

Minimum Message Length and Classical Methods for Model Selection in Univariate Polynomial Regression

  • Viswanathan, Murlikrishna;Yang, Young-Kyu;WhangBo, Taeg-Keun
    • ETRI Journal
    • /
    • v.27 no.6
    • /
    • pp.747-758
    • /
    • 2005
  • The problem of selection among competing models has been a fundamental issue in statistical data analysis. Good fits to data can be misleading since they can result from properties of the model that have nothing to do with it being a close approximation to the source distribution of interest (for example, overfitting). In this study we focus on the preference among models from a family of polynomial regressors. Three decades of research has spawned a number of plausible techniques for the selection of models, namely, Akaike's Finite Prediction Error (FPE) and Information Criterion (AIC), Schwartz's criterion (SCH), Generalized Cross Validation (GCV), Wallace's Minimum Message Length (MML), Minimum Description Length (MDL), and Vapnik's Structural Risk Minimization (SRM). The fundamental similarity between all these principles is their attempt to define an appropriate balance between the complexity of models and their ability to explain the data. This paper presents an empirical study of the above principles in the context of model selection, where the models under consideration are univariate polynomials. The paper includes a detailed empirical evaluation of the model selection methods on six target functions, with varying sample sizes and added Gaussian noise. The results from the study appear to provide strong evidence in support of the MML- and SRM- based methods over the other standard approaches (FPE, AIC, SCH and GCV).

  • PDF