Journal of Information Science Theory and Practice
/
제8권2호
/
pp.6-17
/
2020
Word similarity is often measured to enhance system performance in the information retrieval field and other related areas. This paper reports on an experimental comparison of values for word similarity measures that were computed based on 50 intentionally selected words from a Reuters corpus. There were three targets, including (1) co-occurrence-based similarity measures (for which a co-occurrence frequency is counted as the number of documents or sentences), (2) context-based distributional similarity measures obtained from a latent Dirichlet allocation (LDA), nonnegative matrix factorization (NMF), and Word2Vec algorithm, and (3) similarity measures computed from the tf-idf weights of each word according to a vector space model (VSM). Here, a Pearson correlation coefficient for a pair of VSM-based similarity measures and co-occurrence-based similarity measures according to the number of documents was highest. Group-average agglomerative hierarchical clustering was also applied to similarity matrices computed by individual measures. An evaluation of the cluster sets according to an answer set revealed that VSM- and LDA-based similarity measures performed best.
정보의 출처와 형식이 다양해지고 정보의 양 또한 많아짐에 따라 소셜 웹에서의 맞춤형 지식 생성은 더욱 어려워지고 있다. RSS(Really Simple Syndication)가 정보 수집 방법의 개선에 일조했으나, 웹에 산재된 정보를 찾아 필요한 정보들만으로 구성된 맞춤형 지식을 생성하는 것은 여전히 사용자들의 몫으로 남아 있다. 본 논문에서는 맞춤형 지식 생성의 용이성을 제고하기 위해 상황 기반 유사도를 이용한 맞춤형 지식생성 프레임워크를 제안하였다. 본 프레임워크는 기본적으로 사례 기반추론의 절차를 따르지만, 기존 사례 기반의 유사도 계산 방식이 문법적 추론에 기반했던 것과 달리, 온톨로지를 활용한 의미적 유사도를 이용한 사례 기반 추론을 활용한다. 또한 사용자 요구를 만족하는 유사사례의 보정을 위해 온톨로지를 활용한 정보 집적도 기반의 유사도 방법론을 제안하였다. 본 프레임워크에서는 첫째 비구조적인 웹 정보를 사례 형태의 구조적 정보로 변환하고, 둘째 사용자의 요구에 적합한 의미론적 유사사례를 찾은 후 셋째, 선택된 유사사례의 정보 집적도를 고려한 보정을 통해 맞춤형 지식을 생성하는 과정을 거친다. 본 논문에서는 유사도 계산에 일반적으로 활용되는 여러 방법론들과 비교를 통하여 제안한 온톨로지 기반 의미적 유사도 계산 방법론의 타당성을 입증하였다.
KSII Transactions on Internet and Information Systems (TIIS)
/
제14권2호
/
pp.538-561
/
2020
Recommender Systems (RecSys) have a major role in e-commerce for recommending products, which they may like for every user and thus improve their business aspects. Although many types of RecSyss are there in the research field, the state of the art RecSys has focused on finding the user similarity based on sequence (e.g. purchase history, movie-watching history) analyzing and prediction techniques like Recurrent Neural Network in Deep learning. That is RecSys has considered as a sequence prediction problem. However, evaluation of similarities among the customers is challenging while considering temporal aspects, context and multi-component ratings of the item-records in the customer sequences. For addressing this issue, we are proposing a Deep Learning based model which learns customer similarity directly from the sequence to sequence similarity as well as item to item similarity by considering all features of the item, contexts, and rating components using Dynamic Temporal Warping(DTW) distance measure for dynamic temporal matching and 2D-GRU (Two Dimensional-Gated Recurrent Unit) architecture. This will overcome the limitation of non-linearity in the time dimension while measuring the similarity, and the find patterns more accurately and speedily from temporal and spatial contexts. Experiment on the real world movie data set LDOS-CoMoDa demonstrates the efficacy and promising utility of the proposed personalized RecSys architecture.
본 논문은 HMM 기반의 TTS 시스템을 위하여 상호유사도 비율을 이용한 결정트리 기반의 문맥 군집화 알고리즘을 제안한다. 기존의 알고리즘들은 유사한 통계적 특성을 가지는 문맥종속 HMM을 하나로 묶고 있다. 그러나 기존의 알고리즘들은 결정트리의 나누어진 노드간의 통계적 유사도를 고려하지 않음으로 인하여 최종 노드 사이의 통계적인 차이를 보장하지 못한다. 제안한 알고리즘은 분리된 노드들 간의 통계적 유사도를 최소화하여 모델 파라미터의 신뢰도를 향상시킨다. 실험 결과를 통해 제안한 알고리즘이 기존의 알고리즘들에 비해 우수한 성능을 나타낸다는 것을 확인할 수 있다.
본 논문은 영한 기계번역을 위한 예제기반 기계번역에서 예제 문장의 비교를 위한 척도에 관한 것으로 주어진 질의 문장과 가장 유사한 예제 문장을 찾아내는데 사용되는 유사성 척도를 제안한다. 제안하는 척도는 편집거리 알고리즘에 기반을 둔 것으로 표면어가 일치하지 않는 단어에 대해 기본적으로 단어의 표제어 정보와 품사 정보를 이용하여 유사도를 계산한다. 편집거리 척도는 비교 단위의 순서에 의존적이기는 하지만 순서만 일치하면 동일한 유사성 기여도를 갖는 것으로 판단하기 때문에 완전 문맥을 반영하지는 못한다. 따라서 본 논문에서는 완전 문맥 반영을 위해 추가적으로 이들 정보 외에 일치하는 단위 정보를 갖는 연속된 단어들에 대해 연속 정보를 반영한 문맥 가중치를 제안한다. 또한 비유사성 정도를 의미하는 척도인 편집거리 척도를 유사성 척도로 변경하고, 문맥 가중치가 적용된 척도를 문장 비교에 적용하기 위하여 정규화를 수행하며, 이를 통하여 유사도에 따른 순위를 결정한다. 또한 언어적 정보를 이용한 기존 방법류들에 대한 일반화를 시도하였으며, 문맥 가중치가 적용된 척도의 우수성을 증명하기 위해 일반화된 기존 방법류들과의 비교 실험을 수행하였다.
본 논문에서는 사용자의 컨텍스트 및 프로파일을 이용하여 사용자들 간의 소셜 네트워크를 구성하는 방법을 제안한다. 최근 협업 시스템과 관련하여 소셜 네트워크에 대한 관심이 증대되고 있다. 하지만 기존 연구의 경우, 사용자 로그 및 프로파일과 같은 정적인 데이터에 기반하고 있어서 동적으로 변화하는 환경에서의 소셜 네트워크를 구성하기 어렵다. 따라서 제안된 방법은 유비쿼터스 컴퓨팅 환경에서 정적인 사용자 프로파일과 함께 사용자의 행동을 반영하는 컨텍스트를 이용하여 소셜 네트워크를 구성한다. 컨텍스트 도메인 지식 모델의 계층적 구조 특성을 이용하여 컨텍스트들 간의 유사도를 계산하고, 컨텍스트 모델의 카테고리에 가중치를 부여하여 컨텍스트들 간의 관계성을 계산한다. 제안된 방법의 유용성을 검증하기 위해 사용자의 컨텍스트 변화에 따른 소셜 네트워크의 동적 구성을 실험하였다. 제안된 방법을 활용하여 사용자들의 행동에 동적으로 반응하는 관계 분석이 가능하게 될 것으로 기대된다.
International Journal of Fuzzy Logic and Intelligent Systems
/
제6권2호
/
pp.167-172
/
2006
As ubiquitous devices are fast spreading, the communication problem between humans and these devices is on the rise. The use of context is important in interactive application such as handhold and ubiquitous computing. Context is not crisp data, so it is necessary to introduce the fuzzy concept. The proxity relation is represented by the degree of closeness or similarity between data objects of a scalar domain. A context manager of context-awareness system evaluates imprecise queries with the proximity relations. in this paper, a systematic proximity elicitation method are proposed. The proposed generation method is simple and systematic. It is based on the well-known fuzzy set theory and applicable to the real world applications because it has tuning parameter and weighting factor. The proposed representations of proximity relation is more efficient than the ordinary matrix representation since it reflects some properties of a proximity relation to save space. We show an experiments of quantitative calculate for the proximity relation. And we analyze the time complexity and the space occupancy of the proposed representation method.
이동 컴퓨팅 환경에서 사용자 움직임 판별은 해결해야 할 중요한 이슈중의 하나이다. 본 논문에서는 유클리디안 거리 유사도를 이용하여 스마트폰 사용자의 움직임을 인식하고 판별하기 위한 방법을 제시한다. 제안된 방법에서는 GPS와 가속 센서를 이용하여 데이터를 수집하고, 수집된 데이터를 이용하여, 사용자의 정지, 걷기, 뛰기, 차량이동을 판별한다. 제안된 방법의 타당성과 효율성을 검증하기 위하여, 안드로이드 시스템에 유클리디안 거리 유사도의 여러 변형을 이용한 응용프로그램을 구현하여 그 정확도를 측정하였다. 실험 결과, 사용자 움직임 종류를 90% 이상의 정확도를 가지고 판별해 내었다.
International Journal of Fuzzy Logic and Intelligent Systems
/
제11권4호
/
pp.238-246
/
2011
This paper proposes a new semantic representation and its associated similarity measure. The representation expresses textual context observed in a context of a certain term as a network where nodes are terms and edges are the number of cooccurrences between connected terms. To compare terms represented in networks, a graph kernel is adopted as a similarity measure. The proposed representation has two notable merits compared with previous semantic representations. First, it can process polysemous words in a better way than a vector representation. A network of a polysemous term is regarded as a combination of sub-networks that represent senses and the appropriate sub-network is identified by context before compared by the kernel. Second, the representation permits not only words but also senses or contexts to be represented directly from corresponding set of terms. The validity of the representation and its similarity measure is evaluated with two tasks: synonym test and unsupervised word sense disambiguation. The method performed well and could compete with the state-of-the-art unsupervised methods.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.