• Title/Summary/Keyword: Context Information Modeling

Search Result 273, Processing Time 0.034 seconds

Lossless Compression Algorithm using Spatial and Temporal Information (시간과 공간정보를 이용한 무손실 압축 알고리즘)

  • Kim, Young Ro;Chung, Ji Yung
    • Journal of Korea Society of Digital Industry and Information Management
    • /
    • v.5 no.3
    • /
    • pp.141-145
    • /
    • 2009
  • In this paper, we propose an efficient lossless compression algorithm using spatial and temporal information. The proposed method obtains higher lossless compression of images than other lossless compression techniques. It is divided into two parts, a motion adaptation based predictor part and a residual error coding part. The proposed nonlinear predictor can reduce prediction error by learning from its past prediction errors. The predictor decides the proper selection of the spatial and temporal prediction values according to each past prediction error. The reduced error is coded by existing context coding method. Experimental results show that the proposed algorithm has better performance than those of existing context modeling methods.

Collaborative Place and Object Recognition in Video using Bidirectional Context Information (비디오에서 양방향 문맥 정보를 이용한 상호 협력적인 위치 및 물체 인식)

  • Kim, Sung-Ho;Kweon, In-So
    • The Journal of Korea Robotics Society
    • /
    • v.1 no.2
    • /
    • pp.172-179
    • /
    • 2006
  • In this paper, we present a practical place and object recognition method for guiding visitors in building environments. Recognizing places or objects in real world can be a difficult problem due to motion blur and camera noise. In this work, we present a modeling method based on the bidirectional interaction between places and objects for simultaneous reinforcement for the robust recognition. The unification of visual context including scene context, object context, and temporal context is also. The proposed system has been tested to guide visitors in a large scale building environment (10 topological places, 80 3D objects).

  • PDF

Development of a Matrix-based Context Awareness Model for Vehicle Environment (자동차 공간을 위한 Matrix기반의 상황인식 모델 개발)

  • Ko, Jae-Jin;Choi, Ki-Ho
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.8 no.6
    • /
    • pp.187-195
    • /
    • 2009
  • Recently, with the development of ubiquitous computing, the study and development about context awareness models is required for the application of ubiquitous environment. This paper presents the design and implementation of a matrix based context awareness model for vehicle environment. The matrix construction method using 5W1H and CAM (Context Awareness Model) expression is proposed for context awareness modeling. The system with the proposed model is implemented by Zigbee modules for the recognition of individual identification and position and a navigator for current spatial and temporal information of GPS. The result of experiments shows that the proposed model is available.

  • PDF

Method of Biological Information Analysis Based-on Object Contextual (대상객체 맥락 기반 생체정보 분석방법)

  • Kim, Kyung-jun;Kim, Ju-yeon
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2022.05a
    • /
    • pp.41-43
    • /
    • 2022
  • In order to prevent and block infectious diseases caused by the recent COVID-19 pandemic, non-contact biometric information acquisition and analysis technology is attracting attention. The invasive and attached biometric information acquisition method accurately has the advantage of measuring biometric information, but has a risk of increasing contagious diseases due to the close contact. To solve these problems, the non-contact method of extracting biometric information such as human fingerprints, faces, iris, veins, voice, and signatures with automated devices is increasing in various industries as data processing speed increases and recognition accuracy increases. However, although the accuracy of the non-contact biometric data acquisition technology is improved, the non-contact method is greatly influenced by the surrounding environment of the object to be measured, which is resulting in distortion of measurement information and poor accuracy. In this paper, we propose a context-based bio-signal modeling technique for the interpretation of personalized information (image, signal, etc.) for bio-information analysis. Context-based biometric information modeling techniques present a model that considers contextual and user information in biometric information measurement in order to improve performance. The proposed model analyzes signal information based on the feature probability distribution through context-based signal analysis that can maximize the predicted value probability.

  • PDF

Partnership Enterprise Modeling Using FIDO-Integrated Systems Modeling Technique (FIDO 방법론을 이용한 기업 간 연계 프로세스 모델링)

  • Kim, Joong-In;Kim, Cheol-Han;Lee, Kyung-Huy
    • IE interfaces
    • /
    • v.15 no.1
    • /
    • pp.55-63
    • /
    • 2002
  • This paper utilizes the FIDO methodology (Function, Information, Dynamic, Organization modeling) which is an enterprise modeling tool that can describe inter-organizational interaction (specifically between prime and sub contractors in this experiment). FIDO follows the standard IDEFO rules in order to demonstrate how a cascading information flow can evolve from a customer to a prime to a subcontractor in a concurrent manner, in a supply chain environment. Background on these processes is presented, followed with the newly derived process and methodology. This is presented in a supply chain management context, and results from an actual experiment at Motorola utilizing subcontractors that supply custom machine parts is presented and reviewed.

Panic Disorder Symptom Care System Based on Context Awareness (상황인식 기반의 공황장애 증상 관리 시스템)

  • Choi, Dong-Oun;Huan, Meng;Kang, Yun-Jeong
    • Journal of Korea Entertainment Industry Association
    • /
    • v.13 no.4
    • /
    • pp.63-70
    • /
    • 2019
  • We extract the symptom of panic disorder from the context awareness environment. It extracts body context information through natural movement that exists in everyday life and uses a component of panic disorder. The ontology theory can be used to provide information on the degree of symptoms of panic disorder through inference process. For the components of panic disorder to the information processing based on ontology are defined as Classes. Panic disorder index is expressed through ontology modeling so that the condition of panic disorder can be known. The derivation of panic disorder component and panic disorder index will enable context awareness based information service for panic disorder. The context information is periodically synchronized with the context awareness on based device. Panic disorder can be used to improve the lifestyle of panic disorder.

Parametric Design System Basedon Design Unit and Configuration Design Method (구성 설계방법과 설계유니트를 이용한 파라메트릭 설계 시스템)

  • 명세현;한순흥
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1995.10a
    • /
    • pp.702-706
    • /
    • 1995
  • Integration of CAM and CAM information is important in the CIM era. For a CIM system, the feature representation can be a solution to the integration of product model data. These are geometry feature, functional feature, and manufacturing feature in the feature context. This paper proposes a framework to integrate the configuration design method, parametric modeling and the feature modeling method. The concept of design unit which is one level higher than functional feature and parametric modeling concept with functional features have been proposed.

  • PDF

Intelligent Modeling of User Behavior based on FCM Quantization for Smart home (FCM 이산화를 이용한 스마트 홈에서 행동 모델링)

  • Chung, Woo-Yong;Lee, Jae-Hun;Yon, Suk-Hyun;Cho, Young-Wan;Kim, Eun-Tai
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.13 no.6
    • /
    • pp.542-546
    • /
    • 2007
  • In the vision of ubiquitous computing environment, smart objects would communicate each other and provide many kinds of information about user and their surroundings in the home. This information enables smart objects to recognize context and to provide active and convenient services to the customers. However in most cases, context-aware services are available only with expert systems. In this paper, we present generalized activity recognition application in the smart home based on a naive Bayesian network(BN) and fuzzy clustering. We quantize continuous sensor data with fuzzy c-means clustering to simplify and reduce BN's conditional probability table size. And we apply mutual information to learn the BN structure efficiently. We show that this system can recognize user activities about 80% accuracy in the web based virtual smart home.

Abnormal Behavior Recognition Based on Spatio-temporal Context

  • Yang, Yuanfeng;Li, Lin;Liu, Zhaobin;Liu, Gang
    • Journal of Information Processing Systems
    • /
    • v.16 no.3
    • /
    • pp.612-628
    • /
    • 2020
  • This paper presents a new approach for detecting abnormal behaviors in complex surveillance scenes where anomalies are subtle and difficult to distinguish due to the intricate correlations among multiple objects' behaviors. Specifically, a cascaded probabilistic topic model was put forward for learning the spatial context of local behavior and the temporal context of global behavior in two different stages. In the first stage of topic modeling, unlike the existing approaches using either optical flows or complete trajectories, spatio-temporal correlations between the trajectory fragments in video clips were modeled by the latent Dirichlet allocation (LDA) topic model based on Markov random fields to obtain the spatial context of local behavior in each video clip. The local behavior topic categories were then obtained by exploiting the spectral clustering algorithm. Based on the construction of a dictionary through the process of local behavior topic clustering, the second phase of the LDA topic model learns the correlations of global behaviors and temporal context. In particular, an abnormal behavior recognition method was developed based on the learned spatio-temporal context of behaviors. The specific identification method adopts a top-down strategy and consists of two stages: anomaly recognition of video clip and anomalous behavior recognition within each video clip. Evaluation was performed using the validity of spatio-temporal context learning for local behavior topics and abnormal behavior recognition. Furthermore, the performance of the proposed approach in abnormal behavior recognition improved effectively and significantly in complex surveillance scenes.